Generators in S
80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 38 11 28)(2 39 12 29)(3 40 13 30)(4 21 14 31)(5 22 15 32)(6 23 16 33)(7 24 17 34)(8 25 18 35)(9 26 19 36)(10 27 20 37)(41 66 51 76)(42 67 52 77)(43 68 53 78)(44 69 54 79)(45 70 55 80)(46 71 56 61)(47 72 57 62)(48 73 58 63)(49 74 59 64)(50 75 60 65)
(1 44 11 54)(2 45 12 55)(3 46 13 56)(4 47 14 57)(5 48 15 58)(6 49 16 59)(7 50 17 60)(8 51 18 41)(9 52 19 42)(10 53 20 43)(21 62 31 72)(22 63 32 73)(23 64 33 74)(24 65 34 75)(25 66 35 76)(26 67 36 77)(27 68 37 78)(28 69 38 79)(29 70 39 80)(30 71 40 61)
(21 47 72)(22 48 73)(23 49 74)(24 50 75)(25 51 76)(26 52 77)(27 53 78)(28 54 79)(29 55 80)(30 56 61)(31 57 62)(32 58 63)(33 59 64)(34 60 65)(35 41 66)(36 42 67)(37 43 68)(38 44 69)(39 45 70)(40 46 71)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 76)(22 75)(23 74)(24 73)(25 72)(26 71)(27 70)(28 69)(29 68)(30 67)(31 66)(32 65)(33 64)(34 63)(35 62)(36 61)(37 80)(38 79)(39 78)(40 77)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(58 60)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,38,11,28)(2,39,12,29)(3,40,13,30)(4,21,14,31)(5,22,15,32)(6,23,16,33)(7,24,17,34)(8,25,18,35)(9,26,19,36)(10,27,20,37)(41,66,51,76)(42,67,52,77)(43,68,53,78)(44,69,54,79)(45,70,55,80)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65), (1,44,11,54)(2,45,12,55)(3,46,13,56)(4,47,14,57)(5,48,15,58)(6,49,16,59)(7,50,17,60)(8,51,18,41)(9,52,19,42)(10,53,20,43)(21,62,31,72)(22,63,32,73)(23,64,33,74)(24,65,34,75)(25,66,35,76)(26,67,36,77)(27,68,37,78)(28,69,38,79)(29,70,39,80)(30,71,40,61), (21,47,72)(22,48,73)(23,49,74)(24,50,75)(25,51,76)(26,52,77)(27,53,78)(28,54,79)(29,55,80)(30,56,61)(31,57,62)(32,58,63)(33,59,64)(34,60,65)(35,41,66)(36,42,67)(37,43,68)(38,44,69)(39,45,70)(40,46,71), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,76)(22,75)(23,74)(24,73)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,80)(38,79)(39,78)(40,77)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,38,11,28)(2,39,12,29)(3,40,13,30)(4,21,14,31)(5,22,15,32)(6,23,16,33)(7,24,17,34)(8,25,18,35)(9,26,19,36)(10,27,20,37)(41,66,51,76)(42,67,52,77)(43,68,53,78)(44,69,54,79)(45,70,55,80)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65), (1,44,11,54)(2,45,12,55)(3,46,13,56)(4,47,14,57)(5,48,15,58)(6,49,16,59)(7,50,17,60)(8,51,18,41)(9,52,19,42)(10,53,20,43)(21,62,31,72)(22,63,32,73)(23,64,33,74)(24,65,34,75)(25,66,35,76)(26,67,36,77)(27,68,37,78)(28,69,38,79)(29,70,39,80)(30,71,40,61), (21,47,72)(22,48,73)(23,49,74)(24,50,75)(25,51,76)(26,52,77)(27,53,78)(28,54,79)(29,55,80)(30,56,61)(31,57,62)(32,58,63)(33,59,64)(34,60,65)(35,41,66)(36,42,67)(37,43,68)(38,44,69)(39,45,70)(40,46,71), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,76)(22,75)(23,74)(24,73)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,80)(38,79)(39,78)(40,77)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,38,11,28),(2,39,12,29),(3,40,13,30),(4,21,14,31),(5,22,15,32),(6,23,16,33),(7,24,17,34),(8,25,18,35),(9,26,19,36),(10,27,20,37),(41,66,51,76),(42,67,52,77),(43,68,53,78),(44,69,54,79),(45,70,55,80),(46,71,56,61),(47,72,57,62),(48,73,58,63),(49,74,59,64),(50,75,60,65)], [(1,44,11,54),(2,45,12,55),(3,46,13,56),(4,47,14,57),(5,48,15,58),(6,49,16,59),(7,50,17,60),(8,51,18,41),(9,52,19,42),(10,53,20,43),(21,62,31,72),(22,63,32,73),(23,64,33,74),(24,65,34,75),(25,66,35,76),(26,67,36,77),(27,68,37,78),(28,69,38,79),(29,70,39,80),(30,71,40,61)], [(21,47,72),(22,48,73),(23,49,74),(24,50,75),(25,51,76),(26,52,77),(27,53,78),(28,54,79),(29,55,80),(30,56,61),(31,57,62),(32,58,63),(33,59,64),(34,60,65),(35,41,66),(36,42,67),(37,43,68),(38,44,69),(39,45,70),(40,46,71)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,76),(22,75),(23,74),(24,73),(25,72),(26,71),(27,70),(28,69),(29,68),(30,67),(31,66),(32,65),(33,64),(34,63),(35,62),(36,61),(37,80),(38,79),(39,78),(40,77),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(58,60)]])