Copied to
clipboard

G = C20.2S4order 480 = 25·3·5

2nd non-split extension by C20 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C20.2S4, Q8.3D30, SL2(𝔽3).9D10, C4.2(C5⋊S4), C4.A4.1D5, C10.22(C2×S4), C52(C4.S4), C4○D4.2D15, Q8.D152C2, (C5×Q8).10D6, (C5×SL2(𝔽3)).9C22, C2.8(C2×C5⋊S4), (C5×C4○D4).2S3, (C5×C4.A4).1C2, SmallGroup(480,1030)

Series: Derived Chief Lower central Upper central

C1C2Q8C5×SL2(𝔽3) — C20.2S4
C1C2Q8C5×Q8C5×SL2(𝔽3)Q8.D15 — C20.2S4
C5×SL2(𝔽3) — C20.2S4
C1C2C4

Generators and relations for C20.2S4
 G = < a,b,c,d,e | a20=d3=1, b2=c2=e2=a10, ab=ba, ac=ca, ad=da, eae-1=a-1, cbc-1=a10b, dbd-1=a10bc, ebe-1=bc, dcd-1=b, ece-1=a10c, ede-1=d-1 >

Subgroups: 506 in 72 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C8, C2×C4, D4, Q8, Q8, C10, C10, Dic3, C12, C15, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic5, C20, C20, C2×C10, SL2(𝔽3), Dic6, C30, C8.C22, C52C8, Dic10, C2×Dic5, C2×C20, C5×D4, C5×Q8, CSU2(𝔽3), C4.A4, Dic15, C60, C4.Dic5, D4.D5, C5⋊Q16, C2×Dic10, C5×C4○D4, C4.S4, C5×SL2(𝔽3), Dic30, D4.9D10, Q8.D15, C5×C4.A4, C20.2S4
Quotients: C1, C2, C22, S3, D5, D6, D10, S4, D15, C2×S4, D30, C4.S4, C5⋊S4, C2×C5⋊S4, C20.2S4

Smallest permutation representation of C20.2S4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 102 11 112)(2 103 12 113)(3 104 13 114)(4 105 14 115)(5 106 15 116)(6 107 16 117)(7 108 17 118)(8 109 18 119)(9 110 19 120)(10 111 20 101)(21 130 31 140)(22 131 32 121)(23 132 33 122)(24 133 34 123)(25 134 35 124)(26 135 36 125)(27 136 37 126)(28 137 38 127)(29 138 39 128)(30 139 40 129)(41 74 51 64)(42 75 52 65)(43 76 53 66)(44 77 54 67)(45 78 55 68)(46 79 56 69)(47 80 57 70)(48 61 58 71)(49 62 59 72)(50 63 60 73)(81 150 91 160)(82 151 92 141)(83 152 93 142)(84 153 94 143)(85 154 95 144)(86 155 96 145)(87 156 97 146)(88 157 98 147)(89 158 99 148)(90 159 100 149)
(1 90 11 100)(2 91 12 81)(3 92 13 82)(4 93 14 83)(5 94 15 84)(6 95 16 85)(7 96 17 86)(8 97 18 87)(9 98 19 88)(10 99 20 89)(21 79 31 69)(22 80 32 70)(23 61 33 71)(24 62 34 72)(25 63 35 73)(26 64 36 74)(27 65 37 75)(28 66 38 76)(29 67 39 77)(30 68 40 78)(41 135 51 125)(42 136 52 126)(43 137 53 127)(44 138 54 128)(45 139 55 129)(46 140 56 130)(47 121 57 131)(48 122 58 132)(49 123 59 133)(50 124 60 134)(101 148 111 158)(102 149 112 159)(103 150 113 160)(104 151 114 141)(105 152 115 142)(106 153 116 143)(107 154 117 144)(108 155 118 145)(109 156 119 146)(110 157 120 147)
(21 130 46)(22 131 47)(23 132 48)(24 133 49)(25 134 50)(26 135 51)(27 136 52)(28 137 53)(29 138 54)(30 139 55)(31 140 56)(32 121 57)(33 122 58)(34 123 59)(35 124 60)(36 125 41)(37 126 42)(38 127 43)(39 128 44)(40 129 45)(81 150 113)(82 151 114)(83 152 115)(84 153 116)(85 154 117)(86 155 118)(87 156 119)(88 157 120)(89 158 101)(90 159 102)(91 160 103)(92 141 104)(93 142 105)(94 143 106)(95 144 107)(96 145 108)(97 146 109)(98 147 110)(99 148 111)(100 149 112)
(1 78 11 68)(2 77 12 67)(3 76 13 66)(4 75 14 65)(5 74 15 64)(6 73 16 63)(7 72 17 62)(8 71 18 61)(9 70 19 80)(10 69 20 79)(21 99 31 89)(22 98 32 88)(23 97 33 87)(24 96 34 86)(25 95 35 85)(26 94 36 84)(27 93 37 83)(28 92 38 82)(29 91 39 81)(30 90 40 100)(41 153 51 143)(42 152 52 142)(43 151 53 141)(44 150 54 160)(45 149 55 159)(46 148 56 158)(47 147 57 157)(48 146 58 156)(49 145 59 155)(50 144 60 154)(101 130 111 140)(102 129 112 139)(103 128 113 138)(104 127 114 137)(105 126 115 136)(106 125 116 135)(107 124 117 134)(108 123 118 133)(109 122 119 132)(110 121 120 131)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,102,11,112)(2,103,12,113)(3,104,13,114)(4,105,14,115)(5,106,15,116)(6,107,16,117)(7,108,17,118)(8,109,18,119)(9,110,19,120)(10,111,20,101)(21,130,31,140)(22,131,32,121)(23,132,33,122)(24,133,34,123)(25,134,35,124)(26,135,36,125)(27,136,37,126)(28,137,38,127)(29,138,39,128)(30,139,40,129)(41,74,51,64)(42,75,52,65)(43,76,53,66)(44,77,54,67)(45,78,55,68)(46,79,56,69)(47,80,57,70)(48,61,58,71)(49,62,59,72)(50,63,60,73)(81,150,91,160)(82,151,92,141)(83,152,93,142)(84,153,94,143)(85,154,95,144)(86,155,96,145)(87,156,97,146)(88,157,98,147)(89,158,99,148)(90,159,100,149), (1,90,11,100)(2,91,12,81)(3,92,13,82)(4,93,14,83)(5,94,15,84)(6,95,16,85)(7,96,17,86)(8,97,18,87)(9,98,19,88)(10,99,20,89)(21,79,31,69)(22,80,32,70)(23,61,33,71)(24,62,34,72)(25,63,35,73)(26,64,36,74)(27,65,37,75)(28,66,38,76)(29,67,39,77)(30,68,40,78)(41,135,51,125)(42,136,52,126)(43,137,53,127)(44,138,54,128)(45,139,55,129)(46,140,56,130)(47,121,57,131)(48,122,58,132)(49,123,59,133)(50,124,60,134)(101,148,111,158)(102,149,112,159)(103,150,113,160)(104,151,114,141)(105,152,115,142)(106,153,116,143)(107,154,117,144)(108,155,118,145)(109,156,119,146)(110,157,120,147), (21,130,46)(22,131,47)(23,132,48)(24,133,49)(25,134,50)(26,135,51)(27,136,52)(28,137,53)(29,138,54)(30,139,55)(31,140,56)(32,121,57)(33,122,58)(34,123,59)(35,124,60)(36,125,41)(37,126,42)(38,127,43)(39,128,44)(40,129,45)(81,150,113)(82,151,114)(83,152,115)(84,153,116)(85,154,117)(86,155,118)(87,156,119)(88,157,120)(89,158,101)(90,159,102)(91,160,103)(92,141,104)(93,142,105)(94,143,106)(95,144,107)(96,145,108)(97,146,109)(98,147,110)(99,148,111)(100,149,112), (1,78,11,68)(2,77,12,67)(3,76,13,66)(4,75,14,65)(5,74,15,64)(6,73,16,63)(7,72,17,62)(8,71,18,61)(9,70,19,80)(10,69,20,79)(21,99,31,89)(22,98,32,88)(23,97,33,87)(24,96,34,86)(25,95,35,85)(26,94,36,84)(27,93,37,83)(28,92,38,82)(29,91,39,81)(30,90,40,100)(41,153,51,143)(42,152,52,142)(43,151,53,141)(44,150,54,160)(45,149,55,159)(46,148,56,158)(47,147,57,157)(48,146,58,156)(49,145,59,155)(50,144,60,154)(101,130,111,140)(102,129,112,139)(103,128,113,138)(104,127,114,137)(105,126,115,136)(106,125,116,135)(107,124,117,134)(108,123,118,133)(109,122,119,132)(110,121,120,131)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,102,11,112)(2,103,12,113)(3,104,13,114)(4,105,14,115)(5,106,15,116)(6,107,16,117)(7,108,17,118)(8,109,18,119)(9,110,19,120)(10,111,20,101)(21,130,31,140)(22,131,32,121)(23,132,33,122)(24,133,34,123)(25,134,35,124)(26,135,36,125)(27,136,37,126)(28,137,38,127)(29,138,39,128)(30,139,40,129)(41,74,51,64)(42,75,52,65)(43,76,53,66)(44,77,54,67)(45,78,55,68)(46,79,56,69)(47,80,57,70)(48,61,58,71)(49,62,59,72)(50,63,60,73)(81,150,91,160)(82,151,92,141)(83,152,93,142)(84,153,94,143)(85,154,95,144)(86,155,96,145)(87,156,97,146)(88,157,98,147)(89,158,99,148)(90,159,100,149), (1,90,11,100)(2,91,12,81)(3,92,13,82)(4,93,14,83)(5,94,15,84)(6,95,16,85)(7,96,17,86)(8,97,18,87)(9,98,19,88)(10,99,20,89)(21,79,31,69)(22,80,32,70)(23,61,33,71)(24,62,34,72)(25,63,35,73)(26,64,36,74)(27,65,37,75)(28,66,38,76)(29,67,39,77)(30,68,40,78)(41,135,51,125)(42,136,52,126)(43,137,53,127)(44,138,54,128)(45,139,55,129)(46,140,56,130)(47,121,57,131)(48,122,58,132)(49,123,59,133)(50,124,60,134)(101,148,111,158)(102,149,112,159)(103,150,113,160)(104,151,114,141)(105,152,115,142)(106,153,116,143)(107,154,117,144)(108,155,118,145)(109,156,119,146)(110,157,120,147), (21,130,46)(22,131,47)(23,132,48)(24,133,49)(25,134,50)(26,135,51)(27,136,52)(28,137,53)(29,138,54)(30,139,55)(31,140,56)(32,121,57)(33,122,58)(34,123,59)(35,124,60)(36,125,41)(37,126,42)(38,127,43)(39,128,44)(40,129,45)(81,150,113)(82,151,114)(83,152,115)(84,153,116)(85,154,117)(86,155,118)(87,156,119)(88,157,120)(89,158,101)(90,159,102)(91,160,103)(92,141,104)(93,142,105)(94,143,106)(95,144,107)(96,145,108)(97,146,109)(98,147,110)(99,148,111)(100,149,112), (1,78,11,68)(2,77,12,67)(3,76,13,66)(4,75,14,65)(5,74,15,64)(6,73,16,63)(7,72,17,62)(8,71,18,61)(9,70,19,80)(10,69,20,79)(21,99,31,89)(22,98,32,88)(23,97,33,87)(24,96,34,86)(25,95,35,85)(26,94,36,84)(27,93,37,83)(28,92,38,82)(29,91,39,81)(30,90,40,100)(41,153,51,143)(42,152,52,142)(43,151,53,141)(44,150,54,160)(45,149,55,159)(46,148,56,158)(47,147,57,157)(48,146,58,156)(49,145,59,155)(50,144,60,154)(101,130,111,140)(102,129,112,139)(103,128,113,138)(104,127,114,137)(105,126,115,136)(106,125,116,135)(107,124,117,134)(108,123,118,133)(109,122,119,132)(110,121,120,131) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,102,11,112),(2,103,12,113),(3,104,13,114),(4,105,14,115),(5,106,15,116),(6,107,16,117),(7,108,17,118),(8,109,18,119),(9,110,19,120),(10,111,20,101),(21,130,31,140),(22,131,32,121),(23,132,33,122),(24,133,34,123),(25,134,35,124),(26,135,36,125),(27,136,37,126),(28,137,38,127),(29,138,39,128),(30,139,40,129),(41,74,51,64),(42,75,52,65),(43,76,53,66),(44,77,54,67),(45,78,55,68),(46,79,56,69),(47,80,57,70),(48,61,58,71),(49,62,59,72),(50,63,60,73),(81,150,91,160),(82,151,92,141),(83,152,93,142),(84,153,94,143),(85,154,95,144),(86,155,96,145),(87,156,97,146),(88,157,98,147),(89,158,99,148),(90,159,100,149)], [(1,90,11,100),(2,91,12,81),(3,92,13,82),(4,93,14,83),(5,94,15,84),(6,95,16,85),(7,96,17,86),(8,97,18,87),(9,98,19,88),(10,99,20,89),(21,79,31,69),(22,80,32,70),(23,61,33,71),(24,62,34,72),(25,63,35,73),(26,64,36,74),(27,65,37,75),(28,66,38,76),(29,67,39,77),(30,68,40,78),(41,135,51,125),(42,136,52,126),(43,137,53,127),(44,138,54,128),(45,139,55,129),(46,140,56,130),(47,121,57,131),(48,122,58,132),(49,123,59,133),(50,124,60,134),(101,148,111,158),(102,149,112,159),(103,150,113,160),(104,151,114,141),(105,152,115,142),(106,153,116,143),(107,154,117,144),(108,155,118,145),(109,156,119,146),(110,157,120,147)], [(21,130,46),(22,131,47),(23,132,48),(24,133,49),(25,134,50),(26,135,51),(27,136,52),(28,137,53),(29,138,54),(30,139,55),(31,140,56),(32,121,57),(33,122,58),(34,123,59),(35,124,60),(36,125,41),(37,126,42),(38,127,43),(39,128,44),(40,129,45),(81,150,113),(82,151,114),(83,152,115),(84,153,116),(85,154,117),(86,155,118),(87,156,119),(88,157,120),(89,158,101),(90,159,102),(91,160,103),(92,141,104),(93,142,105),(94,143,106),(95,144,107),(96,145,108),(97,146,109),(98,147,110),(99,148,111),(100,149,112)], [(1,78,11,68),(2,77,12,67),(3,76,13,66),(4,75,14,65),(5,74,15,64),(6,73,16,63),(7,72,17,62),(8,71,18,61),(9,70,19,80),(10,69,20,79),(21,99,31,89),(22,98,32,88),(23,97,33,87),(24,96,34,86),(25,95,35,85),(26,94,36,84),(27,93,37,83),(28,92,38,82),(29,91,39,81),(30,90,40,100),(41,153,51,143),(42,152,52,142),(43,151,53,141),(44,150,54,160),(45,149,55,159),(46,148,56,158),(47,147,57,157),(48,146,58,156),(49,145,59,155),(50,144,60,154),(101,130,111,140),(102,129,112,139),(103,128,113,138),(104,127,114,137),(105,126,115,136),(106,125,116,135),(107,124,117,134),(108,123,118,133),(109,122,119,132),(110,121,120,131)]])

41 conjugacy classes

class 1 2A2B 3 4A4B4C4D5A5B 6 8A8B10A10B10C10D12A12B15A15B15C15D20A20B20C20D20E20F30A30B30C30D60A···60H
order1223444455688101010101212151515152020202020203030303060···60
size116826606022860602212128888882222121288888···8

41 irreducible representations

dim111222222334466
type+++++++++++--++
imageC1C2C2S3D5D6D10D15D30S4C2×S4C4.S4C20.2S4C5⋊S4C2×C5⋊S4
kernelC20.2S4Q8.D15C5×C4.A4C5×C4○D4C4.A4C5×Q8SL2(𝔽3)C4○D4Q8C20C10C5C1C4C2
# reps1211212442231222

Matrix representation of C20.2S4 in GL6(𝔽241)

2280000
233300000
00014299142
00990142142
00142990142
009999990
,
100000
010000
000010
000001
00240000
00024000
,
100000
010000
00000240
000010
00024000
001000
,
02400000
12400000
001000
000001
00024000
00002400
,
1521700000
81890000
0023922120221
0022120239221
0020239221221
002212212212

G:=sub<GL(6,GF(241))| [22,233,0,0,0,0,8,30,0,0,0,0,0,0,0,99,142,99,0,0,142,0,99,99,0,0,99,142,0,99,0,0,142,142,142,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,240,0,0,0,0,1,0,0,0,0,240,0,0,0],[0,1,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,1,0,0],[152,81,0,0,0,0,170,89,0,0,0,0,0,0,239,221,20,221,0,0,221,20,239,221,0,0,20,239,221,221,0,0,221,221,221,2] >;

C20.2S4 in GAP, Magma, Sage, TeX

C_{20}._2S_4
% in TeX

G:=Group("C20.2S4");
// GroupNames label

G:=SmallGroup(480,1030);
// by ID

G=gap.SmallGroup(480,1030);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,1680,3389,1688,170,1347,4204,3168,172,2525,1909,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=d^3=1,b^2=c^2=e^2=a^10,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,c*b*c^-1=a^10*b,d*b*d^-1=a^10*b*c,e*b*e^-1=b*c,d*c*d^-1=b,e*c*e^-1=a^10*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽