Extensions 1→N→G→Q→1 with N=C5 and Q=D4×Dic3

Direct product G=N×Q with N=C5 and Q=D4×Dic3
dρLabelID
C5×D4×Dic3240C5xD4xDic3480,813

Semidirect products G=N:Q with N=C5 and Q=D4×Dic3
extensionφ:Q→Aut NdρLabelID
C5⋊(D4×Dic3) = D4×C3⋊F5φ: D4×Dic3/C3×D4C4 ⊆ Aut C5608C5:(D4xDic3)480,1067
C52(D4×Dic3) = Dic3×D20φ: D4×Dic3/C4×Dic3C2 ⊆ Aut C5240C5:2(D4xDic3)480,501
C53(D4×Dic3) = D208Dic3φ: D4×Dic3/C4⋊Dic3C2 ⊆ Aut C5240C5:3(D4xDic3)480,510
C54(D4×Dic3) = Dic1516D4φ: D4×Dic3/C6.D4C2 ⊆ Aut C5240C5:4(D4xDic3)480,635
C55(D4×Dic3) = Dic3×C5⋊D4φ: D4×Dic3/C22×Dic3C2 ⊆ Aut C5240C5:5(D4xDic3)480,629
C56(D4×Dic3) = D4×Dic15φ: D4×Dic3/C6×D4C2 ⊆ Aut C5240C5:6(D4xDic3)480,899


׿
×
𝔽