Extensions 1→N→G→Q→1 with N=Q8×D5 and Q=S3

Direct product G=N×Q with N=Q8×D5 and Q=S3
dρLabelID
S3×Q8×D51208-S3xQ8xD5480,1107

Semidirect products G=N:Q with N=Q8×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(Q8×D5)⋊1S3 = D10.1S4φ: S3/C1S3 ⊆ Out Q8×D5804-(Q8xD5):1S3480,972
(Q8×D5)⋊2S3 = D10.2S4φ: S3/C1S3 ⊆ Out Q8×D5804(Q8xD5):2S3480,973
(Q8×D5)⋊3S3 = D5×GL2(𝔽3)φ: S3/C1S3 ⊆ Out Q8×D5404(Q8xD5):3S3480,974
(Q8×D5)⋊4S3 = D5×Q82S3φ: S3/C3C2 ⊆ Out Q8×D51208+(Q8xD5):4S3480,577
(Q8×D5)⋊5S3 = D12.27D10φ: S3/C3C2 ⊆ Out Q8×D52408-(Q8xD5):5S3480,589
(Q8×D5)⋊6S3 = C60.39C23φ: S3/C3C2 ⊆ Out Q8×D52408+(Q8xD5):6S3480,591
(Q8×D5)⋊7S3 = C30.33C24φ: S3/C3C2 ⊆ Out Q8×D52408+(Q8xD5):7S3480,1105
(Q8×D5)⋊8S3 = D12.29D10φ: S3/C3C2 ⊆ Out Q8×D52408-(Q8xD5):8S3480,1106
(Q8×D5)⋊9S3 = D5×Q83S3φ: trivial image1208+(Q8xD5):9S3480,1108

Non-split extensions G=N.Q with N=Q8×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(Q8×D5).1S3 = D5×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out Q8×D5804-(Q8xD5).1S3480,971
(Q8×D5).2S3 = D10.S4φ: S3/C1S3 ⊆ Out Q8×D5408-(Q8xD5).2S3480,962
(Q8×D5).3S3 = D5×C3⋊Q16φ: S3/C3C2 ⊆ Out Q8×D52408-(Q8xD5).3S3480,583
(Q8×D5).4S3 = Dic102Dic3φ: S3/C3C2 ⊆ Out Q8×D51208(Q8xD5).4S3480,314
(Q8×D5).5S3 = Q8×C3⋊F5φ: S3/C3C2 ⊆ Out Q8×D51208(Q8xD5).5S3480,1069

׿
×
𝔽