Generators in S
80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 76)(2 75)(3 74)(4 73)(5 72)(6 71)(7 80)(8 79)(9 78)(10 77)(11 52)(12 51)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 42)(22 41)(23 50)(24 49)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 64)(32 63)(33 62)(34 61)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)
(1 69 6 64)(2 70 7 65)(3 61 8 66)(4 62 9 67)(5 63 10 68)(11 22 16 27)(12 23 17 28)(13 24 18 29)(14 25 19 30)(15 26 20 21)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)(41 57 46 52)(42 58 47 53)(43 59 48 54)(44 60 49 55)(45 51 50 56)
(1 58 6 53)(2 59 7 54)(3 60 8 55)(4 51 9 56)(5 52 10 57)(11 77 16 72)(12 78 17 73)(13 79 18 74)(14 80 19 75)(15 71 20 76)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 63 46 68)(42 64 47 69)(43 65 48 70)(44 66 49 61)(45 67 50 62)
(11 22 32)(12 23 33)(13 24 34)(14 25 35)(15 26 36)(16 27 37)(17 28 38)(18 29 39)(19 30 40)(20 21 31)(41 63 52)(42 64 53)(43 65 54)(44 66 55)(45 67 56)(46 68 57)(47 69 58)(48 70 59)(49 61 60)(50 62 51)
(1 72 6 77)(2 73 7 78)(3 74 8 79)(4 75 9 80)(5 76 10 71)(11 58 16 53)(12 59 17 54)(13 60 18 55)(14 51 19 56)(15 52 20 57)(21 68 26 63)(22 69 27 64)(23 70 28 65)(24 61 29 66)(25 62 30 67)(31 46 36 41)(32 47 37 42)(33 48 38 43)(34 49 39 44)(35 50 40 45)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,80)(8,79)(9,78)(10,77)(11,52)(12,51)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,42)(22,41)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,64)(32,63)(33,62)(34,61)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65), (1,69,6,64)(2,70,7,65)(3,61,8,66)(4,62,9,67)(5,63,10,68)(11,22,16,27)(12,23,17,28)(13,24,18,29)(14,25,19,30)(15,26,20,21)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(41,57,46,52)(42,58,47,53)(43,59,48,54)(44,60,49,55)(45,51,50,56), (1,58,6,53)(2,59,7,54)(3,60,8,55)(4,51,9,56)(5,52,10,57)(11,77,16,72)(12,78,17,73)(13,79,18,74)(14,80,19,75)(15,71,20,76)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,63,46,68)(42,64,47,69)(43,65,48,70)(44,66,49,61)(45,67,50,62), (11,22,32)(12,23,33)(13,24,34)(14,25,35)(15,26,36)(16,27,37)(17,28,38)(18,29,39)(19,30,40)(20,21,31)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51), (1,72,6,77)(2,73,7,78)(3,74,8,79)(4,75,9,80)(5,76,10,71)(11,58,16,53)(12,59,17,54)(13,60,18,55)(14,51,19,56)(15,52,20,57)(21,68,26,63)(22,69,27,64)(23,70,28,65)(24,61,29,66)(25,62,30,67)(31,46,36,41)(32,47,37,42)(33,48,38,43)(34,49,39,44)(35,50,40,45)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,80)(8,79)(9,78)(10,77)(11,52)(12,51)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,42)(22,41)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,64)(32,63)(33,62)(34,61)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65), (1,69,6,64)(2,70,7,65)(3,61,8,66)(4,62,9,67)(5,63,10,68)(11,22,16,27)(12,23,17,28)(13,24,18,29)(14,25,19,30)(15,26,20,21)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(41,57,46,52)(42,58,47,53)(43,59,48,54)(44,60,49,55)(45,51,50,56), (1,58,6,53)(2,59,7,54)(3,60,8,55)(4,51,9,56)(5,52,10,57)(11,77,16,72)(12,78,17,73)(13,79,18,74)(14,80,19,75)(15,71,20,76)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,63,46,68)(42,64,47,69)(43,65,48,70)(44,66,49,61)(45,67,50,62), (11,22,32)(12,23,33)(13,24,34)(14,25,35)(15,26,36)(16,27,37)(17,28,38)(18,29,39)(19,30,40)(20,21,31)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51), (1,72,6,77)(2,73,7,78)(3,74,8,79)(4,75,9,80)(5,76,10,71)(11,58,16,53)(12,59,17,54)(13,60,18,55)(14,51,19,56)(15,52,20,57)(21,68,26,63)(22,69,27,64)(23,70,28,65)(24,61,29,66)(25,62,30,67)(31,46,36,41)(32,47,37,42)(33,48,38,43)(34,49,39,44)(35,50,40,45) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,76),(2,75),(3,74),(4,73),(5,72),(6,71),(7,80),(8,79),(9,78),(10,77),(11,52),(12,51),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,42),(22,41),(23,50),(24,49),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,64),(32,63),(33,62),(34,61),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65)], [(1,69,6,64),(2,70,7,65),(3,61,8,66),(4,62,9,67),(5,63,10,68),(11,22,16,27),(12,23,17,28),(13,24,18,29),(14,25,19,30),(15,26,20,21),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75),(41,57,46,52),(42,58,47,53),(43,59,48,54),(44,60,49,55),(45,51,50,56)], [(1,58,6,53),(2,59,7,54),(3,60,8,55),(4,51,9,56),(5,52,10,57),(11,77,16,72),(12,78,17,73),(13,79,18,74),(14,80,19,75),(15,71,20,76),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,63,46,68),(42,64,47,69),(43,65,48,70),(44,66,49,61),(45,67,50,62)], [(11,22,32),(12,23,33),(13,24,34),(14,25,35),(15,26,36),(16,27,37),(17,28,38),(18,29,39),(19,30,40),(20,21,31),(41,63,52),(42,64,53),(43,65,54),(44,66,55),(45,67,56),(46,68,57),(47,69,58),(48,70,59),(49,61,60),(50,62,51)], [(1,72,6,77),(2,73,7,78),(3,74,8,79),(4,75,9,80),(5,76,10,71),(11,58,16,53),(12,59,17,54),(13,60,18,55),(14,51,19,56),(15,52,20,57),(21,68,26,63),(22,69,27,64),(23,70,28,65),(24,61,29,66),(25,62,30,67),(31,46,36,41),(32,47,37,42),(33,48,38,43),(34,49,39,44),(35,50,40,45)]])
52 | 0 | 52 | 0 | 0 | 0 | 0 | 0 |
0 | 52 | 0 | 52 | 0 | 0 | 0 | 0 |
189 | 0 | 240 | 0 | 0 | 0 | 0 | 0 |
0 | 189 | 0 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 240 |
,
52 | 0 | 52 | 0 | 0 | 0 | 0 | 0 |
0 | 52 | 0 | 52 | 0 | 0 | 0 | 0 |
240 | 0 | 189 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 189 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 171 | 70 | 171 |
0 | 0 | 0 | 0 | 70 | 0 | 171 | 171 |
0 | 0 | 0 | 0 | 171 | 70 | 0 | 171 |
0 | 0 | 0 | 0 | 70 | 70 | 70 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 240 | 0 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 240 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
,
240 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 240 | 0 |
,
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 70 | 171 | 70 |
0 | 0 | 0 | 0 | 70 | 171 | 0 | 70 |
0 | 0 | 0 | 0 | 171 | 0 | 70 | 70 |
0 | 0 | 0 | 0 | 70 | 70 | 70 | 0 |
G:=sub<GL(8,GF(241))| [52,0,189,0,0,0,0,0,0,52,0,189,0,0,0,0,52,0,240,0,0,0,0,0,0,52,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[52,0,240,0,0,0,0,0,0,52,0,240,0,0,0,0,52,0,189,0,0,0,0,0,0,52,0,189,0,0,0,0,0,0,0,0,0,70,171,70,0,0,0,0,171,0,70,70,0,0,0,0,70,171,0,70,0,0,0,0,171,171,171,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0],[240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,70,171,70,0,0,0,0,70,171,0,70,0,0,0,0,171,0,70,70,0,0,0,0,70,70,70,0] >;