Generators in S
80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 11)(2 15)(3 14)(4 13)(5 12)(6 65)(7 64)(8 63)(9 62)(10 61)(16 59)(17 58)(18 57)(19 56)(20 60)(21 79)(22 78)(23 77)(24 76)(25 80)(26 48)(27 47)(28 46)(29 50)(30 49)(31 73)(32 72)(33 71)(34 75)(35 74)(36 66)(37 70)(38 69)(39 68)(40 67)(41 54)(42 53)(43 52)(44 51)(45 55)
(1 54 12 42)(2 55 13 43)(3 51 14 44)(4 52 15 45)(5 53 11 41)(6 76 64 23)(7 77 65 24)(8 78 61 25)(9 79 62 21)(10 80 63 22)(16 33 57 74)(17 34 58 75)(18 35 59 71)(19 31 60 72)(20 32 56 73)(26 69 50 40)(27 70 46 36)(28 66 47 37)(29 67 48 38)(30 68 49 39)
(1 66 12 37)(2 67 13 38)(3 68 14 39)(4 69 15 40)(5 70 11 36)(6 60 64 19)(7 56 65 20)(8 57 61 16)(9 58 62 17)(10 59 63 18)(21 75 79 34)(22 71 80 35)(23 72 76 31)(24 73 77 32)(25 74 78 33)(26 45 50 52)(27 41 46 53)(28 42 47 54)(29 43 48 55)(30 44 49 51)
(16 74 25)(17 75 21)(18 71 22)(19 72 23)(20 73 24)(26 52 69)(27 53 70)(28 54 66)(29 55 67)(30 51 68)(31 76 60)(32 77 56)(33 78 57)(34 79 58)(35 80 59)(36 46 41)(37 47 42)(38 48 43)(39 49 44)(40 50 45)
(1 65 12 7)(2 61 13 8)(3 62 14 9)(4 63 15 10)(5 64 11 6)(16 55 57 43)(17 51 58 44)(18 52 59 45)(19 53 60 41)(20 54 56 42)(21 68 79 39)(22 69 80 40)(23 70 76 36)(24 66 77 37)(25 67 78 38)(26 35 50 71)(27 31 46 72)(28 32 47 73)(29 33 48 74)(30 34 49 75)
G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,11)(2,15)(3,14)(4,13)(5,12)(6,65)(7,64)(8,63)(9,62)(10,61)(16,59)(17,58)(18,57)(19,56)(20,60)(21,79)(22,78)(23,77)(24,76)(25,80)(26,48)(27,47)(28,46)(29,50)(30,49)(31,73)(32,72)(33,71)(34,75)(35,74)(36,66)(37,70)(38,69)(39,68)(40,67)(41,54)(42,53)(43,52)(44,51)(45,55), (1,54,12,42)(2,55,13,43)(3,51,14,44)(4,52,15,45)(5,53,11,41)(6,76,64,23)(7,77,65,24)(8,78,61,25)(9,79,62,21)(10,80,63,22)(16,33,57,74)(17,34,58,75)(18,35,59,71)(19,31,60,72)(20,32,56,73)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39), (1,66,12,37)(2,67,13,38)(3,68,14,39)(4,69,15,40)(5,70,11,36)(6,60,64,19)(7,56,65,20)(8,57,61,16)(9,58,62,17)(10,59,63,18)(21,75,79,34)(22,71,80,35)(23,72,76,31)(24,73,77,32)(25,74,78,33)(26,45,50,52)(27,41,46,53)(28,42,47,54)(29,43,48,55)(30,44,49,51), (16,74,25)(17,75,21)(18,71,22)(19,72,23)(20,73,24)(26,52,69)(27,53,70)(28,54,66)(29,55,67)(30,51,68)(31,76,60)(32,77,56)(33,78,57)(34,79,58)(35,80,59)(36,46,41)(37,47,42)(38,48,43)(39,49,44)(40,50,45), (1,65,12,7)(2,61,13,8)(3,62,14,9)(4,63,15,10)(5,64,11,6)(16,55,57,43)(17,51,58,44)(18,52,59,45)(19,53,60,41)(20,54,56,42)(21,68,79,39)(22,69,80,40)(23,70,76,36)(24,66,77,37)(25,67,78,38)(26,35,50,71)(27,31,46,72)(28,32,47,73)(29,33,48,74)(30,34,49,75)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,11)(2,15)(3,14)(4,13)(5,12)(6,65)(7,64)(8,63)(9,62)(10,61)(16,59)(17,58)(18,57)(19,56)(20,60)(21,79)(22,78)(23,77)(24,76)(25,80)(26,48)(27,47)(28,46)(29,50)(30,49)(31,73)(32,72)(33,71)(34,75)(35,74)(36,66)(37,70)(38,69)(39,68)(40,67)(41,54)(42,53)(43,52)(44,51)(45,55), (1,54,12,42)(2,55,13,43)(3,51,14,44)(4,52,15,45)(5,53,11,41)(6,76,64,23)(7,77,65,24)(8,78,61,25)(9,79,62,21)(10,80,63,22)(16,33,57,74)(17,34,58,75)(18,35,59,71)(19,31,60,72)(20,32,56,73)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39), (1,66,12,37)(2,67,13,38)(3,68,14,39)(4,69,15,40)(5,70,11,36)(6,60,64,19)(7,56,65,20)(8,57,61,16)(9,58,62,17)(10,59,63,18)(21,75,79,34)(22,71,80,35)(23,72,76,31)(24,73,77,32)(25,74,78,33)(26,45,50,52)(27,41,46,53)(28,42,47,54)(29,43,48,55)(30,44,49,51), (16,74,25)(17,75,21)(18,71,22)(19,72,23)(20,73,24)(26,52,69)(27,53,70)(28,54,66)(29,55,67)(30,51,68)(31,76,60)(32,77,56)(33,78,57)(34,79,58)(35,80,59)(36,46,41)(37,47,42)(38,48,43)(39,49,44)(40,50,45), (1,65,12,7)(2,61,13,8)(3,62,14,9)(4,63,15,10)(5,64,11,6)(16,55,57,43)(17,51,58,44)(18,52,59,45)(19,53,60,41)(20,54,56,42)(21,68,79,39)(22,69,80,40)(23,70,76,36)(24,66,77,37)(25,67,78,38)(26,35,50,71)(27,31,46,72)(28,32,47,73)(29,33,48,74)(30,34,49,75) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,11),(2,15),(3,14),(4,13),(5,12),(6,65),(7,64),(8,63),(9,62),(10,61),(16,59),(17,58),(18,57),(19,56),(20,60),(21,79),(22,78),(23,77),(24,76),(25,80),(26,48),(27,47),(28,46),(29,50),(30,49),(31,73),(32,72),(33,71),(34,75),(35,74),(36,66),(37,70),(38,69),(39,68),(40,67),(41,54),(42,53),(43,52),(44,51),(45,55)], [(1,54,12,42),(2,55,13,43),(3,51,14,44),(4,52,15,45),(5,53,11,41),(6,76,64,23),(7,77,65,24),(8,78,61,25),(9,79,62,21),(10,80,63,22),(16,33,57,74),(17,34,58,75),(18,35,59,71),(19,31,60,72),(20,32,56,73),(26,69,50,40),(27,70,46,36),(28,66,47,37),(29,67,48,38),(30,68,49,39)], [(1,66,12,37),(2,67,13,38),(3,68,14,39),(4,69,15,40),(5,70,11,36),(6,60,64,19),(7,56,65,20),(8,57,61,16),(9,58,62,17),(10,59,63,18),(21,75,79,34),(22,71,80,35),(23,72,76,31),(24,73,77,32),(25,74,78,33),(26,45,50,52),(27,41,46,53),(28,42,47,54),(29,43,48,55),(30,44,49,51)], [(16,74,25),(17,75,21),(18,71,22),(19,72,23),(20,73,24),(26,52,69),(27,53,70),(28,54,66),(29,55,67),(30,51,68),(31,76,60),(32,77,56),(33,78,57),(34,79,58),(35,80,59),(36,46,41),(37,47,42),(38,48,43),(39,49,44),(40,50,45)], [(1,65,12,7),(2,61,13,8),(3,62,14,9),(4,63,15,10),(5,64,11,6),(16,55,57,43),(17,51,58,44),(18,52,59,45),(19,53,60,41),(20,54,56,42),(21,68,79,39),(22,69,80,40),(23,70,76,36),(24,66,77,37),(25,67,78,38),(26,35,50,71),(27,31,46,72),(28,32,47,73),(29,33,48,74),(30,34,49,75)]])