Extensions 1→N→G→Q→1 with N=D5xC2xC12 and Q=C2

Direct product G=NxQ with N=D5xC2xC12 and Q=C2
dρLabelID
D5xC22xC12240D5xC2^2xC12480,1136

Semidirect products G=N:Q with N=D5xC2xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC2xC12):1C2 = D5xC4oD12φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12):1C2480,1090
(D5xC2xC12):2C2 = C60:D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):2C2480,525
(D5xC2xC12):3C2 = C12:7D20φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):3C2480,526
(D5xC2xC12):4C2 = C2xD12:5D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):4C2480,1084
(D5xC2xC12):5C2 = C2xC12.28D10φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):5C2480,1085
(D5xC2xC12):6C2 = C2xD5xD12φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12):6C2480,1087
(D5xC2xC12):7C2 = C4xC15:D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):7C2480,515
(D5xC2xC12):8C2 = C4xC3:D20φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):8C2480,519
(D5xC2xC12):9C2 = C2xD6.D10φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):9C2480,1083
(D5xC2xC12):10C2 = S3xC2xC4xD5φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12):10C2480,1086
(D5xC2xC12):11C2 = C3xC4:D20φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):11C2480,688
(D5xC2xC12):12C2 = C3xC20:2D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):12C2480,731
(D5xC2xC12):13C2 = C6xD4xD5φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12):13C2480,1139
(D5xC2xC12):14C2 = C6xD4:2D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):14C2480,1140
(D5xC2xC12):15C2 = C6xQ8:2D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):15C2480,1143
(D5xC2xC12):16C2 = C3xD5xC4oD4φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12):16C2480,1145
(D5xC2xC12):17C2 = Dic3:C4:D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):17C2480,424
(D5xC2xC12):18C2 = D6:(C4xD5)φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):18C2480,516
(D5xC2xC12):19C2 = C15:20(C4xD4)φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):19C2480,520
(D5xC2xC12):20C2 = D6:C4:D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):20C2480,523
(D5xC2xC12):21C2 = D10:D12φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):21C2480,524
(D5xC2xC12):22C2 = D5xD6:C4φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12):22C2480,547
(D5xC2xC12):23C2 = C12xD20φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):23C2480,666
(D5xC2xC12):24C2 = C3xD5xC22:C4φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12):24C2480,673
(D5xC2xC12):25C2 = C3xDic5:4D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):25C2480,674
(D5xC2xC12):26C2 = C3xD10.12D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):26C2480,676
(D5xC2xC12):27C2 = C3xD10:D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):27C2480,677
(D5xC2xC12):28C2 = C3xD20:8C4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):28C2480,686
(D5xC2xC12):29C2 = C3xD10.13D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):29C2480,687
(D5xC2xC12):30C2 = C12xC5:D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):30C2480,721
(D5xC2xC12):31C2 = C6xC4oD20φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12):31C2480,1138

Non-split extensions G=N.Q with N=D5xC2xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC2xC12).1C2 = D5xC4.Dic3φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12).1C2480,358
(D5xC2xC12).2C2 = (C4xD5):Dic3φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).2C2480,434
(D5xC2xC12).3C2 = C60.67D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).3C2480,435
(D5xC2xC12).4C2 = C60.68D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).4C2480,436
(D5xC2xC12).5C2 = D5xC4:Dic3φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).5C2480,488
(D5xC2xC12).6C2 = C2xD5xDic6φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).6C2480,1073
(D5xC2xC12).7C2 = C60.93D4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).7C2480,31
(D5xC2xC12).8C2 = C2xD5xC3:C8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).8C2480,357
(D5xC2xC12).9C2 = C2xC20.32D6φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).9C2480,369
(D5xC2xC12).10C2 = (D5xC12):C4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).10C2480,433
(D5xC2xC12).11C2 = C4xD5xDic3φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).11C2480,467
(D5xC2xC12).12C2 = C3xC4:C4:7D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).12C2480,685
(D5xC2xC12).13C2 = C3xD10:2Q8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).13C2480,690
(D5xC2xC12).14C2 = C3xD5xM4(2)φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12).14C2480,699
(D5xC2xC12).15C2 = C3xD10:3Q8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).15C2480,739
(D5xC2xC12).16C2 = C6xQ8xD5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).16C2480,1142
(D5xC2xC12).17C2 = C2xC12.F5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).17C2480,1061
(D5xC2xC12).18C2 = C2xC60:C4φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12).18C2480,1064
(D5xC2xC12).19C2 = C60.59(C2xC4)φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12).19C2480,1062
(D5xC2xC12).20C2 = (C2xC12):6F5φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12).20C2480,1065
(D5xC2xC12).21C2 = C3xD10:1C8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).21C2480,98
(D5xC2xC12).22C2 = C3xD10:C8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).22C2480,283
(D5xC2xC12).23C2 = C3xD10.3Q8φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12).23C2480,286
(D5xC2xC12).24C2 = C30.7M4(2)φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).24C2480,308
(D5xC2xC12).25C2 = D10.10D12φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12).25C2480,311
(D5xC2xC12).26C2 = D10:Dic6φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).26C2480,425
(D5xC2xC12).27C2 = D5xDic3:C4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).27C2480,468
(D5xC2xC12).28C2 = C3xC42:D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).28C2480,665
(D5xC2xC12).29C2 = C3xD5xC4:C4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).29C2480,684
(D5xC2xC12).30C2 = C3xD10:Q8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).30C2480,689
(D5xC2xC12).31C2 = C6xC8:D5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).31C2480,693
(D5xC2xC12).32C2 = C2xC60.C4φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).32C2480,1060
(D5xC2xC12).33C2 = C2xC4xC3:F5φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12).33C2480,1063
(D5xC2xC12).34C2 = C6xC4.F5φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).34C2480,1048
(D5xC2xC12).35C2 = C6xC4:F5φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12).35C2480,1051
(D5xC2xC12).36C2 = C3xD5:M4(2)φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12).36C2480,1049
(D5xC2xC12).37C2 = C3xD10.C23φ: C2/C1C2 ⊆ Out D5xC2xC121204(D5xC2xC12).37C2480,1052
(D5xC2xC12).38C2 = C6xD5:C8φ: C2/C1C2 ⊆ Out D5xC2xC12240(D5xC2xC12).38C2480,1047
(D5xC2xC12).39C2 = F5xC2xC12φ: C2/C1C2 ⊆ Out D5xC2xC12120(D5xC2xC12).39C2480,1050
(D5xC2xC12).40C2 = D5xC4xC12φ: trivial image240(D5xC2xC12).40C2480,664
(D5xC2xC12).41C2 = D5xC2xC24φ: trivial image240(D5xC2xC12).41C2480,692

׿
x
:
Z
F
o
wr
Q
<