Extensions 1→N→G→Q→1 with N=Dic3 and Q=C4×D5

Direct product G=N×Q with N=Dic3 and Q=C4×D5
dρLabelID
C4×D5×Dic3240C4xD5xDic3480,467

Semidirect products G=N:Q with N=Dic3 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
Dic31(C4×D5) = Dic1513D4φ: C4×D5/Dic5C2 ⊆ Out Dic3240Dic3:1(C4xD5)480,472
Dic32(C4×D5) = C1520(C4×D4)φ: C4×D5/Dic5C2 ⊆ Out Dic3240Dic3:2(C4xD5)480,520
Dic33(C4×D5) = Dic34D20φ: C4×D5/C20C2 ⊆ Out Dic3240Dic3:3(C4xD5)480,471
Dic34(C4×D5) = C4×C3⋊D20φ: C4×D5/C20C2 ⊆ Out Dic3240Dic3:4(C4xD5)480,519
Dic35(C4×D5) = D5×Dic3⋊C4φ: C4×D5/D10C2 ⊆ Out Dic3240Dic3:5(C4xD5)480,468
Dic36(C4×D5) = D30.Q8φ: C4×D5/D10C2 ⊆ Out Dic3240Dic3:6(C4xD5)480,480
Dic37(C4×D5) = C4×D30.C2φ: trivial image240Dic3:7(C4xD5)480,477

Non-split extensions G=N.Q with N=Dic3 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
Dic3.1(C4×D5) = C40.34D6φ: C4×D5/Dic5C2 ⊆ Out Dic32404Dic3.1(C4xD5)480,342
Dic3.2(C4×D5) = C40.35D6φ: C4×D5/Dic5C2 ⊆ Out Dic32404Dic3.2(C4xD5)480,344
Dic3.3(C4×D5) = Dic55Dic6φ: C4×D5/Dic5C2 ⊆ Out Dic3480Dic3.3(C4xD5)480,399
Dic3.4(C4×D5) = Dic155Q8φ: C4×D5/Dic5C2 ⊆ Out Dic3480Dic3.4(C4xD5)480,401
Dic3.5(C4×D5) = C40.54D6φ: C4×D5/C20C2 ⊆ Out Dic32404Dic3.5(C4xD5)480,341
Dic3.6(C4×D5) = C40.55D6φ: C4×D5/C20C2 ⊆ Out Dic32404Dic3.6(C4xD5)480,343
Dic3.7(C4×D5) = Dic35Dic10φ: C4×D5/C20C2 ⊆ Out Dic3480Dic3.7(C4xD5)480,400
Dic3.8(C4×D5) = C4×C15⋊Q8φ: C4×D5/C20C2 ⊆ Out Dic3480Dic3.8(C4xD5)480,543
Dic3.9(C4×D5) = D5×C8⋊S3φ: C4×D5/D10C2 ⊆ Out Dic31204Dic3.9(C4xD5)480,320
Dic3.10(C4×D5) = C40⋊D6φ: C4×D5/D10C2 ⊆ Out Dic31204Dic3.10(C4xD5)480,322
Dic3.11(C4×D5) = D10.19(C4×S3)φ: C4×D5/D10C2 ⊆ Out Dic3240Dic3.11(C4xD5)480,470
Dic3.12(C4×D5) = D30.C2⋊C4φ: C4×D5/D10C2 ⊆ Out Dic3240Dic3.12(C4xD5)480,478
Dic3.13(C4×D5) = S3×C8×D5φ: trivial image1204Dic3.13(C4xD5)480,319
Dic3.14(C4×D5) = S3×C8⋊D5φ: trivial image1204Dic3.14(C4xD5)480,321
Dic3.15(C4×D5) = (D5×Dic3)⋊C4φ: trivial image240Dic3.15(C4xD5)480,469
Dic3.16(C4×D5) = D30.23(C2×C4)φ: trivial image240Dic3.16(C4xD5)480,479

׿
×
𝔽