Extensions 1→N→G→Q→1 with N=C3xD4xD5 and Q=C2

Direct product G=NxQ with N=C3xD4xD5 and Q=C2
dρLabelID
C6xD4xD5120C6xD4xD5480,1139

Semidirect products G=N:Q with N=C3xD4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4xD5):1C2 = D5xD4:S3φ: C2/C1C2 ⊆ Out C3xD4xD51208+(C3xD4xD5):1C2480,553
(C3xD4xD5):2C2 = D12:10D10φ: C2/C1C2 ⊆ Out C3xD4xD51208-(C3xD4xD5):2C2480,565
(C3xD4xD5):3C2 = D20.9D6φ: C2/C1C2 ⊆ Out C3xD4xD51208+(C3xD4xD5):3C2480,567
(C3xD4xD5):4C2 = S3xD4xD5φ: C2/C1C2 ⊆ Out C3xD4xD5608+(C3xD4xD5):4C2480,1097
(C3xD4xD5):5C2 = D5xD4:2S3φ: C2/C1C2 ⊆ Out C3xD4xD51208-(C3xD4xD5):5C2480,1098
(C3xD4xD5):6C2 = D20:13D6φ: C2/C1C2 ⊆ Out C3xD4xD51208-(C3xD4xD5):6C2480,1101
(C3xD4xD5):7C2 = D20:14D6φ: C2/C1C2 ⊆ Out C3xD4xD51208+(C3xD4xD5):7C2480,1102
(C3xD4xD5):8C2 = C3xD5xD8φ: C2/C1C2 ⊆ Out C3xD4xD51204(C3xD4xD5):8C2480,703
(C3xD4xD5):9C2 = C3xD8:D5φ: C2/C1C2 ⊆ Out C3xD4xD51204(C3xD4xD5):9C2480,704
(C3xD4xD5):10C2 = C3xD40:C2φ: C2/C1C2 ⊆ Out C3xD4xD51204(C3xD4xD5):10C2480,707
(C3xD4xD5):11C2 = C3xD4:6D10φ: C2/C1C2 ⊆ Out C3xD4xD51204(C3xD4xD5):11C2480,1141
(C3xD4xD5):12C2 = C3xD4:8D10φ: C2/C1C2 ⊆ Out C3xD4xD51204(C3xD4xD5):12C2480,1146
(C3xD4xD5):13C2 = C3xD5xC4oD4φ: trivial image1204(C3xD4xD5):13C2480,1145

Non-split extensions G=N.Q with N=C3xD4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4xD5).1C2 = D5xD4.S3φ: C2/C1C2 ⊆ Out C3xD4xD51208-(C3xD4xD5).1C2480,559
(C3xD4xD5).2C2 = D20:Dic3φ: C2/C1C2 ⊆ Out C3xD4xD51208(C3xD4xD5).2C2480,312
(C3xD4xD5).3C2 = D4xC3:F5φ: C2/C1C2 ⊆ Out C3xD4xD5608(C3xD4xD5).3C2480,1067
(C3xD4xD5).4C2 = C3xD5xSD16φ: C2/C1C2 ⊆ Out C3xD4xD51204(C3xD4xD5).4C2480,706
(C3xD4xD5).5C2 = C3xD20:C4φ: C2/C1C2 ⊆ Out C3xD4xD51208(C3xD4xD5).5C2480,287
(C3xD4xD5).6C2 = C3xD4xF5φ: C2/C1C2 ⊆ Out C3xD4xD5608(C3xD4xD5).6C2480,1054

׿
x
:
Z
F
o
wr
Q
<