Extensions 1→N→G→Q→1 with N=C3×D4×D5 and Q=C2

Direct product G=N×Q with N=C3×D4×D5 and Q=C2
dρLabelID
C6×D4×D5120C6xD4xD5480,1139

Semidirect products G=N:Q with N=C3×D4×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4×D5)⋊1C2 = D5×D4⋊S3φ: C2/C1C2 ⊆ Out C3×D4×D51208+(C3xD4xD5):1C2480,553
(C3×D4×D5)⋊2C2 = D1210D10φ: C2/C1C2 ⊆ Out C3×D4×D51208-(C3xD4xD5):2C2480,565
(C3×D4×D5)⋊3C2 = D20.9D6φ: C2/C1C2 ⊆ Out C3×D4×D51208+(C3xD4xD5):3C2480,567
(C3×D4×D5)⋊4C2 = S3×D4×D5φ: C2/C1C2 ⊆ Out C3×D4×D5608+(C3xD4xD5):4C2480,1097
(C3×D4×D5)⋊5C2 = D5×D42S3φ: C2/C1C2 ⊆ Out C3×D4×D51208-(C3xD4xD5):5C2480,1098
(C3×D4×D5)⋊6C2 = D2013D6φ: C2/C1C2 ⊆ Out C3×D4×D51208-(C3xD4xD5):6C2480,1101
(C3×D4×D5)⋊7C2 = D2014D6φ: C2/C1C2 ⊆ Out C3×D4×D51208+(C3xD4xD5):7C2480,1102
(C3×D4×D5)⋊8C2 = C3×D5×D8φ: C2/C1C2 ⊆ Out C3×D4×D51204(C3xD4xD5):8C2480,703
(C3×D4×D5)⋊9C2 = C3×D8⋊D5φ: C2/C1C2 ⊆ Out C3×D4×D51204(C3xD4xD5):9C2480,704
(C3×D4×D5)⋊10C2 = C3×D40⋊C2φ: C2/C1C2 ⊆ Out C3×D4×D51204(C3xD4xD5):10C2480,707
(C3×D4×D5)⋊11C2 = C3×D46D10φ: C2/C1C2 ⊆ Out C3×D4×D51204(C3xD4xD5):11C2480,1141
(C3×D4×D5)⋊12C2 = C3×D48D10φ: C2/C1C2 ⊆ Out C3×D4×D51204(C3xD4xD5):12C2480,1146
(C3×D4×D5)⋊13C2 = C3×D5×C4○D4φ: trivial image1204(C3xD4xD5):13C2480,1145

Non-split extensions G=N.Q with N=C3×D4×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4×D5).1C2 = D5×D4.S3φ: C2/C1C2 ⊆ Out C3×D4×D51208-(C3xD4xD5).1C2480,559
(C3×D4×D5).2C2 = D20⋊Dic3φ: C2/C1C2 ⊆ Out C3×D4×D51208(C3xD4xD5).2C2480,312
(C3×D4×D5).3C2 = D4×C3⋊F5φ: C2/C1C2 ⊆ Out C3×D4×D5608(C3xD4xD5).3C2480,1067
(C3×D4×D5).4C2 = C3×D5×SD16φ: C2/C1C2 ⊆ Out C3×D4×D51204(C3xD4xD5).4C2480,706
(C3×D4×D5).5C2 = C3×D20⋊C4φ: C2/C1C2 ⊆ Out C3×D4×D51208(C3xD4xD5).5C2480,287
(C3×D4×D5).6C2 = C3×D4×F5φ: C2/C1C2 ⊆ Out C3×D4×D5608(C3xD4xD5).6C2480,1054

׿
×
𝔽