Extensions 1→N→G→Q→1 with N=C8 and Q=C3⋊F5

Direct product G=N×Q with N=C8 and Q=C3⋊F5
dρLabelID
C8×C3⋊F51204C8xC3:F5480,296

Semidirect products G=N:Q with N=C8 and Q=C3⋊F5
extensionφ:Q→Aut NdρLabelID
C81(C3⋊F5) = D5.D24φ: C3⋊F5/C3×D5C2 ⊆ Aut C81204C8:1(C3:F5)480,299
C82(C3⋊F5) = C120⋊C4φ: C3⋊F5/C3×D5C2 ⊆ Aut C81204C8:2(C3:F5)480,298
C83(C3⋊F5) = C24⋊F5φ: C3⋊F5/C3×D5C2 ⊆ Aut C81204C8:3(C3:F5)480,297

Non-split extensions G=N.Q with N=C8 and Q=C3⋊F5
extensionφ:Q→Aut NdρLabelID
C8.1(C3⋊F5) = C24.1F5φ: C3⋊F5/C3×D5C2 ⊆ Aut C82404C8.1(C3:F5)480,301
C8.2(C3⋊F5) = C40.Dic3φ: C3⋊F5/C3×D5C2 ⊆ Aut C82404C8.2(C3:F5)480,300
C8.3(C3⋊F5) = C120.C4φ: C3⋊F5/C3×D5C2 ⊆ Aut C82404C8.3(C3:F5)480,295
C8.4(C3⋊F5) = C15⋊C32central extension (φ=1)4804C8.4(C3:F5)480,6
C8.5(C3⋊F5) = C24.F5central extension (φ=1)2404C8.5(C3:F5)480,294

׿
×
𝔽