Extensions 1→N→G→Q→1 with N=D6 and Q=C4×D5

Direct product G=N×Q with N=D6 and Q=C4×D5
dρLabelID
S3×C2×C4×D5120S3xC2xC4xD5480,1086

Semidirect products G=N:Q with N=D6 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
D61(C4×D5) = Dic54D12φ: C4×D5/Dic5C2 ⊆ Out D6240D6:1(C4xD5)480,481
D62(C4×D5) = Dic1514D4φ: C4×D5/Dic5C2 ⊆ Out D6240D6:2(C4xD5)480,482
D63(C4×D5) = D6⋊(C4×D5)φ: C4×D5/Dic5C2 ⊆ Out D6240D6:3(C4xD5)480,516
D64(C4×D5) = Dic159D4φ: C4×D5/Dic5C2 ⊆ Out D6240D6:4(C4xD5)480,518
D65(C4×D5) = C4×C15⋊D4φ: C4×D5/C20C2 ⊆ Out D6240D6:5(C4xD5)480,515
D66(C4×D5) = C1517(C4×D4)φ: C4×D5/C20C2 ⊆ Out D6240D6:6(C4xD5)480,517
D67(C4×D5) = C4×C5⋊D12φ: C4×D5/C20C2 ⊆ Out D6240D6:7(C4xD5)480,521
D68(C4×D5) = C1522(C4×D4)φ: C4×D5/C20C2 ⊆ Out D6240D6:8(C4xD5)480,522
D69(C4×D5) = D5×D6⋊C4φ: C4×D5/D10C2 ⊆ Out D6120D6:9(C4xD5)480,547
D610(C4×D5) = D30.27D4φ: C4×D5/D10C2 ⊆ Out D6120D6:10(C4xD5)480,549

Non-split extensions G=N.Q with N=D6 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
D6.1(C4×D5) = C40.34D6φ: C4×D5/Dic5C2 ⊆ Out D62404D6.1(C4xD5)480,342
D6.2(C4×D5) = C40.35D6φ: C4×D5/Dic5C2 ⊆ Out D62404D6.2(C4xD5)480,344
D6.3(C4×D5) = C40.54D6φ: C4×D5/C20C2 ⊆ Out D62404D6.3(C4xD5)480,341
D6.4(C4×D5) = C40.55D6φ: C4×D5/C20C2 ⊆ Out D62404D6.4(C4xD5)480,343
D6.5(C4×D5) = D5×C8⋊S3φ: C4×D5/D10C2 ⊆ Out D61204D6.5(C4xD5)480,320
D6.6(C4×D5) = C40⋊D6φ: C4×D5/D10C2 ⊆ Out D61204D6.6(C4xD5)480,322
D6.7(C4×D5) = D6.(C4×D5)φ: C4×D5/D10C2 ⊆ Out D6240D6.7(C4xD5)480,474
D6.8(C4×D5) = (S3×Dic5)⋊C4φ: C4×D5/D10C2 ⊆ Out D6240D6.8(C4xD5)480,476
D6.9(C4×D5) = S3×C8×D5φ: trivial image1204D6.9(C4xD5)480,319
D6.10(C4×D5) = S3×C8⋊D5φ: trivial image1204D6.10(C4xD5)480,321
D6.11(C4×D5) = C4×S3×Dic5φ: trivial image240D6.11(C4xD5)480,473
D6.12(C4×D5) = S3×C10.D4φ: trivial image240D6.12(C4xD5)480,475
D6.13(C4×D5) = S3×D10⋊C4φ: trivial image120D6.13(C4xD5)480,548

׿
×
𝔽