Extensions 1→N→G→Q→1 with N=Dic3×F5 and Q=C2

Direct product G=N×Q with N=Dic3×F5 and Q=C2
dρLabelID
C2×Dic3×F5120C2xDic3xF5480,998

Semidirect products G=N:Q with N=Dic3×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×F5)⋊1C2 = C4⋊F53S3φ: C2/C1C2 ⊆ Out Dic3×F51208(Dic3xF5):1C2480,983
(Dic3×F5)⋊2C2 = C22⋊F5.S3φ: C2/C1C2 ⊆ Out Dic3×F51208-(Dic3xF5):2C2480,999
(Dic3×F5)⋊3C2 = F5×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×F5608(Dic3xF5):3C2480,1010
(Dic3×F5)⋊4C2 = C3⋊D4⋊F5φ: C2/C1C2 ⊆ Out Dic3×F5608(Dic3xF5):4C2480,1012
(Dic3×F5)⋊5C2 = C4×S3×F5φ: trivial image608(Dic3xF5):5C2480,994

Non-split extensions G=N.Q with N=Dic3×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×F5).1C2 = F5×Dic6φ: C2/C1C2 ⊆ Out Dic3×F51208-(Dic3xF5).1C2480,982
(Dic3×F5).2C2 = Dic65F5φ: C2/C1C2 ⊆ Out Dic3×F51208-(Dic3xF5).2C2480,984

׿
×
𝔽