Extensions 1→N→G→Q→1 with N=Dic3xF5 and Q=C2

Direct product G=NxQ with N=Dic3xF5 and Q=C2
dρLabelID
C2xDic3xF5120C2xDic3xF5480,998

Semidirect products G=N:Q with N=Dic3xF5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xF5):1C2 = C4:F5:3S3φ: C2/C1C2 ⊆ Out Dic3xF51208(Dic3xF5):1C2480,983
(Dic3xF5):2C2 = C22:F5.S3φ: C2/C1C2 ⊆ Out Dic3xF51208-(Dic3xF5):2C2480,999
(Dic3xF5):3C2 = F5xC3:D4φ: C2/C1C2 ⊆ Out Dic3xF5608(Dic3xF5):3C2480,1010
(Dic3xF5):4C2 = C3:D4:F5φ: C2/C1C2 ⊆ Out Dic3xF5608(Dic3xF5):4C2480,1012
(Dic3xF5):5C2 = C4xS3xF5φ: trivial image608(Dic3xF5):5C2480,994

Non-split extensions G=N.Q with N=Dic3xF5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xF5).1C2 = F5xDic6φ: C2/C1C2 ⊆ Out Dic3xF51208-(Dic3xF5).1C2480,982
(Dic3xF5).2C2 = Dic6:5F5φ: C2/C1C2 ⊆ Out Dic3xF51208-(Dic3xF5).2C2480,984

׿
x
:
Z
F
o
wr
Q
<