direct product, metacyclic, nilpotent (class 3), monomial, 3-elementary
Aliases: C2×C27⋊C9, C54⋊C9, C27⋊2C18, C18.53- 1+2, C9⋊C9.1C6, C27⋊C3.2C6, C6.3(C9⋊C9), C18.2(C3×C9), C9.2(C3×C18), (C3×C18).1C32, C9.5(C2×3- 1+2), (C3×C6).73- 1+2, C32.7(C2×3- 1+2), (C2×C27⋊C3).C3, C3.3(C2×C9⋊C9), (C2×C9⋊C9).1C3, (C3×C9).1(C3×C6), SmallGroup(486,82)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C9 — C27⋊C3 — C27⋊C9 — C2×C27⋊C9 |
Generators and relations for C2×C27⋊C9
G = < a,b,c | a2=b27=c9=1, ab=ba, ac=ca, cbc-1=b7 >
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 28)(26 29)(27 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(2 5 17 11 14 26 20 23 8)(3 9 6 21 27 24 12 18 15)(4 13 22)(7 25 16)(28 46 37)(29 50 53 38 32 35 47 41 44)(30 54 42 48 45 33 39 36 51)(34 43 52)
G:=sub<Sym(54)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,28)(26,29)(27,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,5,17,11,14,26,20,23,8)(3,9,6,21,27,24,12,18,15)(4,13,22)(7,25,16)(28,46,37)(29,50,53,38,32,35,47,41,44)(30,54,42,48,45,33,39,36,51)(34,43,52)>;
G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,28)(26,29)(27,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,5,17,11,14,26,20,23,8)(3,9,6,21,27,24,12,18,15)(4,13,22)(7,25,16)(28,46,37)(29,50,53,38,32,35,47,41,44)(30,54,42,48,45,33,39,36,51)(34,43,52) );
G=PermutationGroup([[(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,28),(26,29),(27,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(2,5,17,11,14,26,20,23,8),(3,9,6,21,27,24,12,18,15),(4,13,22),(7,25,16),(28,46,37),(29,50,53,38,32,35,47,41,44),(30,54,42,48,45,33,39,36,51),(34,43,52)]])
70 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F | 18G | ··· | 18L | 27A | ··· | 27R | 54A | ··· | 54R |
order | 1 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 | 27 | ··· | 27 | 54 | ··· | 54 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 |
type | + | + | ||||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | C9 | C18 | 3- 1+2 | 3- 1+2 | C2×3- 1+2 | C2×3- 1+2 | C27⋊C9 | C2×C27⋊C9 |
kernel | C2×C27⋊C9 | C27⋊C9 | C2×C9⋊C9 | C2×C27⋊C3 | C9⋊C9 | C27⋊C3 | C54 | C27 | C18 | C3×C6 | C9 | C32 | C2 | C1 |
# reps | 1 | 1 | 2 | 6 | 2 | 6 | 18 | 18 | 4 | 2 | 4 | 2 | 2 | 2 |
Matrix representation of C2×C27⋊C9 ►in GL9(𝔽109)
108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 108 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 108 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 108 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 108 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
46 | 45 | 0 | 45 | 62 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 63 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 63 | 0 | 0 |
108 | 63 | 0 | 0 | 64 | 0 | 0 | 63 | 0 |
63 | 64 | 0 | 0 | 1 | 0 | 0 | 0 | 63 |
0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
63 | 64 | 45 | 0 | 46 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 45 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
64 | 45 | 63 | 0 | 0 | 0 | 0 | 0 | 0 |
45 | 108 | 0 | 63 | 0 | 62 | 0 | 0 | 0 |
0 | 63 | 0 | 0 | 0 | 64 | 0 | 0 | 0 |
1 | 1 | 0 | 46 | 45 | 46 | 0 | 0 | 0 |
46 | 45 | 0 | 0 | 0 | 0 | 1 | 91 | 0 |
45 | 0 | 0 | 0 | 0 | 0 | 46 | 108 | 1 |
63 | 1 | 0 | 0 | 0 | 0 | 108 | 64 | 0 |
G:=sub<GL(9,GF(109))| [108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108],[0,46,0,0,108,63,0,63,0,0,45,0,0,63,64,45,64,1,0,0,0,0,0,0,0,45,0,1,45,0,0,0,0,0,0,0,0,62,63,0,64,1,0,46,45,0,0,1,0,0,0,0,0,0,0,0,0,63,0,0,0,0,0,0,0,0,0,63,0,0,0,0,0,0,0,0,0,63,0,0,0],[1,0,64,45,0,1,46,45,63,0,45,45,108,63,1,45,0,1,0,0,63,0,0,0,0,0,0,0,0,0,63,0,46,0,0,0,0,0,0,0,0,45,0,0,0,0,0,0,62,64,46,0,0,0,0,0,0,0,0,0,1,46,108,0,0,0,0,0,0,91,108,64,0,0,0,0,0,0,0,1,0] >;
C2×C27⋊C9 in GAP, Magma, Sage, TeX
C_2\times C_{27}\rtimes C_9
% in TeX
G:=Group("C2xC27:C9");
// GroupNames label
G:=SmallGroup(486,82);
// by ID
G=gap.SmallGroup(486,82);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,68,2169,237,1906]);
// Polycyclic
G:=Group<a,b,c|a^2=b^27=c^9=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^7>;
// generators/relations
Export