d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3xC9xC18 | 486 | C3xC9xC18 | 486,190 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C9:1(C3xC18) = C9xC9:C6 | φ: C3xC18/C9 → C6 ⊆ Aut C9 | 54 | 6 | C9:1(C3xC18) | 486,100 |
C9:2(C3xC18) = C3xC9:C18 | φ: C3xC18/C32 → C6 ⊆ Aut C9 | 54 | C9:2(C3xC18) | 486,96 | |
C9:3(C3xC18) = C18x3- 1+2 | φ: C3xC18/C18 → C3 ⊆ Aut C9 | 162 | C9:3(C3xC18) | 486,195 | |
C9:4(C3xC18) = C6xC9:C9 | φ: C3xC18/C3xC6 → C3 ⊆ Aut C9 | 486 | C9:4(C3xC18) | 486,192 | |
C9:5(C3xC18) = D9xC3xC9 | φ: C3xC18/C3xC9 → C2 ⊆ Aut C9 | 54 | C9:5(C3xC18) | 486,91 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C9.1(C3xC18) = C2xC27oHe3 | φ: C3xC18/C18 → C3 ⊆ Aut C9 | 162 | 3 | C9.1(C3xC18) | 486,209 |
C9.2(C3xC18) = C2xC27:C9 | φ: C3xC18/C3xC6 → C3 ⊆ Aut C9 | 54 | 9 | C9.2(C3xC18) | 486,82 |
C9.3(C3xC18) = C2xC92:3C3 | φ: C3xC18/C3xC6 → C3 ⊆ Aut C9 | 162 | C9.3(C3xC18) | 486,193 | |
C9.4(C3xC18) = C6xC27:C3 | φ: C3xC18/C3xC6 → C3 ⊆ Aut C9 | 162 | C9.4(C3xC18) | 486,208 | |
C9.5(C3xC18) = C2xC27:2C9 | central extension (φ=1) | 486 | C9.5(C3xC18) | 486,71 | |
C9.6(C3xC18) = C2xC81:C3 | central extension (φ=1) | 162 | 3 | C9.6(C3xC18) | 486,84 |