Extensions 1→N→G→Q→1 with N=C9 and Q=C3xC18

Direct product G=NxQ with N=C9 and Q=C3xC18
dρLabelID
C3xC9xC18486C3xC9xC18486,190

Semidirect products G=N:Q with N=C9 and Q=C3xC18
extensionφ:Q→Aut NdρLabelID
C9:1(C3xC18) = C9xC9:C6φ: C3xC18/C9C6 ⊆ Aut C9546C9:1(C3xC18)486,100
C9:2(C3xC18) = C3xC9:C18φ: C3xC18/C32C6 ⊆ Aut C954C9:2(C3xC18)486,96
C9:3(C3xC18) = C18x3- 1+2φ: C3xC18/C18C3 ⊆ Aut C9162C9:3(C3xC18)486,195
C9:4(C3xC18) = C6xC9:C9φ: C3xC18/C3xC6C3 ⊆ Aut C9486C9:4(C3xC18)486,192
C9:5(C3xC18) = D9xC3xC9φ: C3xC18/C3xC9C2 ⊆ Aut C954C9:5(C3xC18)486,91

Non-split extensions G=N.Q with N=C9 and Q=C3xC18
extensionφ:Q→Aut NdρLabelID
C9.1(C3xC18) = C2xC27oHe3φ: C3xC18/C18C3 ⊆ Aut C91623C9.1(C3xC18)486,209
C9.2(C3xC18) = C2xC27:C9φ: C3xC18/C3xC6C3 ⊆ Aut C9549C9.2(C3xC18)486,82
C9.3(C3xC18) = C2xC92:3C3φ: C3xC18/C3xC6C3 ⊆ Aut C9162C9.3(C3xC18)486,193
C9.4(C3xC18) = C6xC27:C3φ: C3xC18/C3xC6C3 ⊆ Aut C9162C9.4(C3xC18)486,208
C9.5(C3xC18) = C2xC27:2C9central extension (φ=1)486C9.5(C3xC18)486,71
C9.6(C3xC18) = C2xC81:C3central extension (φ=1)1623C9.6(C3xC18)486,84

׿
x
:
Z
F
o
wr
Q
<