Copied to
clipboard

G = C2×C61⋊C4order 488 = 23·61

Direct product of C2 and C61⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C61⋊C4, C122⋊C4, D61⋊C4, D122.C2, D61.C22, C61⋊(C2×C4), SmallGroup(488,12)

Series: Derived Chief Lower central Upper central

C1C61 — C2×C61⋊C4
C1C61D61C61⋊C4 — C2×C61⋊C4
C61 — C2×C61⋊C4
C1C2

Generators and relations for C2×C61⋊C4
 G = < a,b,c | a2=b61=c4=1, ab=ba, ac=ca, cbc-1=b50 >

61C2
61C2
61C4
61C22
61C4
61C2×C4

Smallest permutation representation of C2×C61⋊C4
On 122 points
Generators in S122
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 81)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 88)(28 89)(29 90)(30 91)(31 92)(32 93)(33 94)(34 95)(35 96)(36 97)(37 98)(38 99)(39 100)(40 101)(41 102)(42 103)(43 104)(44 105)(45 106)(46 107)(47 108)(48 109)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 121)(61 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61)(62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122)
(1 62)(2 73 61 112)(3 84 60 101)(4 95 59 90)(5 106 58 79)(6 117 57 68)(7 67 56 118)(8 78 55 107)(9 89 54 96)(10 100 53 85)(11 111 52 74)(12 122 51 63)(13 72 50 113)(14 83 49 102)(15 94 48 91)(16 105 47 80)(17 116 46 69)(18 66 45 119)(19 77 44 108)(20 88 43 97)(21 99 42 86)(22 110 41 75)(23 121 40 64)(24 71 39 114)(25 82 38 103)(26 93 37 92)(27 104 36 81)(28 115 35 70)(29 65 34 120)(30 76 33 109)(31 87 32 98)

G:=sub<Sym(122)| (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,101)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61)(62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122), (1,62)(2,73,61,112)(3,84,60,101)(4,95,59,90)(5,106,58,79)(6,117,57,68)(7,67,56,118)(8,78,55,107)(9,89,54,96)(10,100,53,85)(11,111,52,74)(12,122,51,63)(13,72,50,113)(14,83,49,102)(15,94,48,91)(16,105,47,80)(17,116,46,69)(18,66,45,119)(19,77,44,108)(20,88,43,97)(21,99,42,86)(22,110,41,75)(23,121,40,64)(24,71,39,114)(25,82,38,103)(26,93,37,92)(27,104,36,81)(28,115,35,70)(29,65,34,120)(30,76,33,109)(31,87,32,98)>;

G:=Group( (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,101)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61)(62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122), (1,62)(2,73,61,112)(3,84,60,101)(4,95,59,90)(5,106,58,79)(6,117,57,68)(7,67,56,118)(8,78,55,107)(9,89,54,96)(10,100,53,85)(11,111,52,74)(12,122,51,63)(13,72,50,113)(14,83,49,102)(15,94,48,91)(16,105,47,80)(17,116,46,69)(18,66,45,119)(19,77,44,108)(20,88,43,97)(21,99,42,86)(22,110,41,75)(23,121,40,64)(24,71,39,114)(25,82,38,103)(26,93,37,92)(27,104,36,81)(28,115,35,70)(29,65,34,120)(30,76,33,109)(31,87,32,98) );

G=PermutationGroup([[(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,81),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,88),(28,89),(29,90),(30,91),(31,92),(32,93),(33,94),(34,95),(35,96),(36,97),(37,98),(38,99),(39,100),(40,101),(41,102),(42,103),(43,104),(44,105),(45,106),(46,107),(47,108),(48,109),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,121),(61,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61),(62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)], [(1,62),(2,73,61,112),(3,84,60,101),(4,95,59,90),(5,106,58,79),(6,117,57,68),(7,67,56,118),(8,78,55,107),(9,89,54,96),(10,100,53,85),(11,111,52,74),(12,122,51,63),(13,72,50,113),(14,83,49,102),(15,94,48,91),(16,105,47,80),(17,116,46,69),(18,66,45,119),(19,77,44,108),(20,88,43,97),(21,99,42,86),(22,110,41,75),(23,121,40,64),(24,71,39,114),(25,82,38,103),(26,93,37,92),(27,104,36,81),(28,115,35,70),(29,65,34,120),(30,76,33,109),(31,87,32,98)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D61A···61O122A···122O
order1222444461···61122···122
size116161616161614···44···4

38 irreducible representations

dim1111144
type+++++
imageC1C2C2C4C4C61⋊C4C2×C61⋊C4
kernelC2×C61⋊C4C61⋊C4D122D61C122C2C1
# reps121221515

Matrix representation of C2×C61⋊C4 in GL4(𝔽733) generated by

732000
073200
007320
000732
,
136226136732
1000
0100
0010
,
732000
726502618625
124369530108
479452393435
G:=sub<GL(4,GF(733))| [732,0,0,0,0,732,0,0,0,0,732,0,0,0,0,732],[136,1,0,0,226,0,1,0,136,0,0,1,732,0,0,0],[732,726,124,479,0,502,369,452,0,618,530,393,0,625,108,435] >;

C2×C61⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{61}\rtimes C_4
% in TeX

G:=Group("C2xC61:C4");
// GroupNames label

G:=SmallGroup(488,12);
// by ID

G=gap.SmallGroup(488,12);
# by ID

G:=PCGroup([4,-2,-2,-2,-61,16,1411,1931]);
// Polycyclic

G:=Group<a,b,c|a^2=b^61=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^50>;
// generators/relations

Export

Subgroup lattice of C2×C61⋊C4 in TeX

׿
×
𝔽