Copied to
clipboard

G = C2×He3⋊C9order 486 = 2·35

Direct product of C2 and He3⋊C9

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×He3⋊C9, He32C18, (C2×He3)⋊C9, C6.7C3≀C3, C32⋊C913C6, (C32×C9)⋊27C6, (C32×C18)⋊1C3, (C6×He3).3C3, (C3×C6).24He3, C6.7(C32⋊C9), (C3×He3).16C6, C32.1(C3×C18), C33.34(C3×C6), C6.7(He3.C3), C32.22(C2×He3), C6.5(He3⋊C3), (C32×C6).22C32, (C3×C6).13- 1+2, C32.1(C2×3- 1+2), C3.2(C2×C3≀C3), (C3×C6).1(C3×C9), (C2×C32⋊C9)⋊5C3, C3.7(C2×C32⋊C9), C3.2(C2×He3.C3), C3.2(C2×He3⋊C3), SmallGroup(486,77)

Series: Derived Chief Lower central Upper central

C1C32 — C2×He3⋊C9
C1C3C32C33C3×He3He3⋊C9 — C2×He3⋊C9
C1C3C32 — C2×He3⋊C9
C1C3×C6C32×C6 — C2×He3⋊C9

Generators and relations for C2×He3⋊C9
 G = < a,b,c,d,e | a2=b3=c3=d3=e9=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe-1=bc-1, cd=dc, ce=ec, ede-1=b-1c-1d >

Subgroups: 306 in 94 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, He3, He3, C33, C33, C3×C18, C2×He3, C2×He3, C32×C6, C32×C6, C32⋊C9, C32×C9, C3×He3, C2×C32⋊C9, C32×C18, C6×He3, He3⋊C9, C2×He3⋊C9
Quotients: C1, C2, C3, C6, C9, C32, C18, C3×C6, C3×C9, He3, 3- 1+2, C3×C18, C2×He3, C2×3- 1+2, C32⋊C9, C3≀C3, He3.C3, He3⋊C3, C2×C32⋊C9, C2×C3≀C3, C2×He3.C3, C2×He3⋊C3, He3⋊C9, C2×He3⋊C9

Smallest permutation representation of C2×He3⋊C9
On 162 points
Generators in S162
(1 141)(2 142)(3 143)(4 144)(5 136)(6 137)(7 138)(8 139)(9 140)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 82)(36 83)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 117)(62 109)(63 110)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 4 7)(2 21 78)(3 76 25)(5 24 81)(6 79 19)(8 27 75)(9 73 22)(10 46 85)(11 83 50)(12 15 18)(13 49 88)(14 86 53)(16 52 82)(17 89 47)(20 23 26)(28 31 34)(29 91 127)(30 134 95)(32 94 130)(33 128 98)(35 97 133)(36 131 92)(37 111 68)(38 41 44)(39 67 116)(40 114 71)(42 70 110)(43 117 65)(45 64 113)(48 51 54)(55 149 118)(56 59 62)(57 126 145)(58 152 121)(60 120 148)(61 146 124)(63 123 151)(66 69 72)(74 77 80)(84 87 90)(93 96 99)(100 137 160)(101 104 107)(102 159 142)(103 140 154)(105 162 136)(106 143 157)(108 156 139)(109 112 115)(119 122 125)(129 132 135)(138 141 144)(147 150 153)(155 158 161)
(1 80 26)(2 81 27)(3 73 19)(4 74 20)(5 75 21)(6 76 22)(7 77 23)(8 78 24)(9 79 25)(10 88 52)(11 89 53)(12 90 54)(13 82 46)(14 83 47)(15 84 48)(16 85 49)(17 86 50)(18 87 51)(28 129 96)(29 130 97)(30 131 98)(31 132 99)(32 133 91)(33 134 92)(34 135 93)(35 127 94)(36 128 95)(37 117 71)(38 109 72)(39 110 64)(40 111 65)(41 112 66)(42 113 67)(43 114 68)(44 115 69)(45 116 70)(55 146 121)(56 147 122)(57 148 123)(58 149 124)(59 150 125)(60 151 126)(61 152 118)(62 153 119)(63 145 120)(100 143 154)(101 144 155)(102 136 156)(103 137 157)(104 138 158)(105 139 159)(106 140 160)(107 141 161)(108 142 162)
(1 42 14)(2 65 51)(3 72 13)(4 45 17)(5 68 54)(6 66 16)(7 39 11)(8 71 48)(9 69 10)(12 75 43)(15 78 37)(18 81 40)(19 109 46)(20 70 50)(21 114 90)(22 112 49)(23 64 53)(24 117 84)(25 115 52)(26 67 47)(27 111 87)(28 105 61)(29 157 122)(30 155 60)(31 108 55)(32 160 125)(33 158 63)(34 102 58)(35 154 119)(36 161 57)(38 82 73)(41 85 76)(44 88 79)(56 130 103)(59 133 106)(62 127 100)(74 116 86)(77 110 89)(80 113 83)(91 140 150)(92 138 120)(93 156 124)(94 143 153)(95 141 123)(96 159 118)(97 137 147)(98 144 126)(99 162 121)(101 151 131)(104 145 134)(107 148 128)(129 139 152)(132 142 146)(135 136 149)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)

G:=sub<Sym(162)| (1,141)(2,142)(3,143)(4,144)(5,136)(6,137)(7,138)(8,139)(9,140)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,21,78)(3,76,25)(5,24,81)(6,79,19)(8,27,75)(9,73,22)(10,46,85)(11,83,50)(12,15,18)(13,49,88)(14,86,53)(16,52,82)(17,89,47)(20,23,26)(28,31,34)(29,91,127)(30,134,95)(32,94,130)(33,128,98)(35,97,133)(36,131,92)(37,111,68)(38,41,44)(39,67,116)(40,114,71)(42,70,110)(43,117,65)(45,64,113)(48,51,54)(55,149,118)(56,59,62)(57,126,145)(58,152,121)(60,120,148)(61,146,124)(63,123,151)(66,69,72)(74,77,80)(84,87,90)(93,96,99)(100,137,160)(101,104,107)(102,159,142)(103,140,154)(105,162,136)(106,143,157)(108,156,139)(109,112,115)(119,122,125)(129,132,135)(138,141,144)(147,150,153)(155,158,161), (1,80,26)(2,81,27)(3,73,19)(4,74,20)(5,75,21)(6,76,22)(7,77,23)(8,78,24)(9,79,25)(10,88,52)(11,89,53)(12,90,54)(13,82,46)(14,83,47)(15,84,48)(16,85,49)(17,86,50)(18,87,51)(28,129,96)(29,130,97)(30,131,98)(31,132,99)(32,133,91)(33,134,92)(34,135,93)(35,127,94)(36,128,95)(37,117,71)(38,109,72)(39,110,64)(40,111,65)(41,112,66)(42,113,67)(43,114,68)(44,115,69)(45,116,70)(55,146,121)(56,147,122)(57,148,123)(58,149,124)(59,150,125)(60,151,126)(61,152,118)(62,153,119)(63,145,120)(100,143,154)(101,144,155)(102,136,156)(103,137,157)(104,138,158)(105,139,159)(106,140,160)(107,141,161)(108,142,162), (1,42,14)(2,65,51)(3,72,13)(4,45,17)(5,68,54)(6,66,16)(7,39,11)(8,71,48)(9,69,10)(12,75,43)(15,78,37)(18,81,40)(19,109,46)(20,70,50)(21,114,90)(22,112,49)(23,64,53)(24,117,84)(25,115,52)(26,67,47)(27,111,87)(28,105,61)(29,157,122)(30,155,60)(31,108,55)(32,160,125)(33,158,63)(34,102,58)(35,154,119)(36,161,57)(38,82,73)(41,85,76)(44,88,79)(56,130,103)(59,133,106)(62,127,100)(74,116,86)(77,110,89)(80,113,83)(91,140,150)(92,138,120)(93,156,124)(94,143,153)(95,141,123)(96,159,118)(97,137,147)(98,144,126)(99,162,121)(101,151,131)(104,145,134)(107,148,128)(129,139,152)(132,142,146)(135,136,149), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162)>;

G:=Group( (1,141)(2,142)(3,143)(4,144)(5,136)(6,137)(7,138)(8,139)(9,140)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,21,78)(3,76,25)(5,24,81)(6,79,19)(8,27,75)(9,73,22)(10,46,85)(11,83,50)(12,15,18)(13,49,88)(14,86,53)(16,52,82)(17,89,47)(20,23,26)(28,31,34)(29,91,127)(30,134,95)(32,94,130)(33,128,98)(35,97,133)(36,131,92)(37,111,68)(38,41,44)(39,67,116)(40,114,71)(42,70,110)(43,117,65)(45,64,113)(48,51,54)(55,149,118)(56,59,62)(57,126,145)(58,152,121)(60,120,148)(61,146,124)(63,123,151)(66,69,72)(74,77,80)(84,87,90)(93,96,99)(100,137,160)(101,104,107)(102,159,142)(103,140,154)(105,162,136)(106,143,157)(108,156,139)(109,112,115)(119,122,125)(129,132,135)(138,141,144)(147,150,153)(155,158,161), (1,80,26)(2,81,27)(3,73,19)(4,74,20)(5,75,21)(6,76,22)(7,77,23)(8,78,24)(9,79,25)(10,88,52)(11,89,53)(12,90,54)(13,82,46)(14,83,47)(15,84,48)(16,85,49)(17,86,50)(18,87,51)(28,129,96)(29,130,97)(30,131,98)(31,132,99)(32,133,91)(33,134,92)(34,135,93)(35,127,94)(36,128,95)(37,117,71)(38,109,72)(39,110,64)(40,111,65)(41,112,66)(42,113,67)(43,114,68)(44,115,69)(45,116,70)(55,146,121)(56,147,122)(57,148,123)(58,149,124)(59,150,125)(60,151,126)(61,152,118)(62,153,119)(63,145,120)(100,143,154)(101,144,155)(102,136,156)(103,137,157)(104,138,158)(105,139,159)(106,140,160)(107,141,161)(108,142,162), (1,42,14)(2,65,51)(3,72,13)(4,45,17)(5,68,54)(6,66,16)(7,39,11)(8,71,48)(9,69,10)(12,75,43)(15,78,37)(18,81,40)(19,109,46)(20,70,50)(21,114,90)(22,112,49)(23,64,53)(24,117,84)(25,115,52)(26,67,47)(27,111,87)(28,105,61)(29,157,122)(30,155,60)(31,108,55)(32,160,125)(33,158,63)(34,102,58)(35,154,119)(36,161,57)(38,82,73)(41,85,76)(44,88,79)(56,130,103)(59,133,106)(62,127,100)(74,116,86)(77,110,89)(80,113,83)(91,140,150)(92,138,120)(93,156,124)(94,143,153)(95,141,123)(96,159,118)(97,137,147)(98,144,126)(99,162,121)(101,151,131)(104,145,134)(107,148,128)(129,139,152)(132,142,146)(135,136,149), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162) );

G=PermutationGroup([[(1,141),(2,142),(3,143),(4,144),(5,136),(6,137),(7,138),(8,139),(9,140),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,82),(36,83),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,117),(62,109),(63,110),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,4,7),(2,21,78),(3,76,25),(5,24,81),(6,79,19),(8,27,75),(9,73,22),(10,46,85),(11,83,50),(12,15,18),(13,49,88),(14,86,53),(16,52,82),(17,89,47),(20,23,26),(28,31,34),(29,91,127),(30,134,95),(32,94,130),(33,128,98),(35,97,133),(36,131,92),(37,111,68),(38,41,44),(39,67,116),(40,114,71),(42,70,110),(43,117,65),(45,64,113),(48,51,54),(55,149,118),(56,59,62),(57,126,145),(58,152,121),(60,120,148),(61,146,124),(63,123,151),(66,69,72),(74,77,80),(84,87,90),(93,96,99),(100,137,160),(101,104,107),(102,159,142),(103,140,154),(105,162,136),(106,143,157),(108,156,139),(109,112,115),(119,122,125),(129,132,135),(138,141,144),(147,150,153),(155,158,161)], [(1,80,26),(2,81,27),(3,73,19),(4,74,20),(5,75,21),(6,76,22),(7,77,23),(8,78,24),(9,79,25),(10,88,52),(11,89,53),(12,90,54),(13,82,46),(14,83,47),(15,84,48),(16,85,49),(17,86,50),(18,87,51),(28,129,96),(29,130,97),(30,131,98),(31,132,99),(32,133,91),(33,134,92),(34,135,93),(35,127,94),(36,128,95),(37,117,71),(38,109,72),(39,110,64),(40,111,65),(41,112,66),(42,113,67),(43,114,68),(44,115,69),(45,116,70),(55,146,121),(56,147,122),(57,148,123),(58,149,124),(59,150,125),(60,151,126),(61,152,118),(62,153,119),(63,145,120),(100,143,154),(101,144,155),(102,136,156),(103,137,157),(104,138,158),(105,139,159),(106,140,160),(107,141,161),(108,142,162)], [(1,42,14),(2,65,51),(3,72,13),(4,45,17),(5,68,54),(6,66,16),(7,39,11),(8,71,48),(9,69,10),(12,75,43),(15,78,37),(18,81,40),(19,109,46),(20,70,50),(21,114,90),(22,112,49),(23,64,53),(24,117,84),(25,115,52),(26,67,47),(27,111,87),(28,105,61),(29,157,122),(30,155,60),(31,108,55),(32,160,125),(33,158,63),(34,102,58),(35,154,119),(36,161,57),(38,82,73),(41,85,76),(44,88,79),(56,130,103),(59,133,106),(62,127,100),(74,116,86),(77,110,89),(80,113,83),(91,140,150),(92,138,120),(93,156,124),(94,143,153),(95,141,123),(96,159,118),(97,137,147),(98,144,126),(99,162,121),(101,151,131),(104,145,134),(107,148,128),(129,139,152),(132,142,146),(135,136,149)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)]])

102 conjugacy classes

class 1  2 3A···3H3I···3N3O···3T6A···6H6I···6N6O···6T9A···9R9S···9AD18A···18R18S···18AD
order123···33···33···36···66···66···69···99···918···1818···18
size111···13···39···91···13···39···93···39···93···39···9

102 irreducible representations

dim11111111113333333333
type++
imageC1C2C3C3C3C6C6C6C9C18He33- 1+2C2×He3C2×3- 1+2C3≀C3He3.C3He3⋊C3C2×C3≀C3C2×He3.C3C2×He3⋊C3
kernelC2×He3⋊C9He3⋊C9C2×C32⋊C9C32×C18C6×He3C32⋊C9C32×C9C3×He3C2×He3He3C3×C6C3×C6C32C32C6C6C6C3C3C3
# reps1142242218182424666666

Matrix representation of C2×He3⋊C9 in GL4(𝔽19) generated by

18000
0100
0010
0001
,
1000
0700
0010
00011
,
1000
01100
00110
00011
,
7000
00110
00011
01100
,
16000
00110
0007
0700
G:=sub<GL(4,GF(19))| [18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,7,0,0,0,0,1,0,0,0,0,11],[1,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[7,0,0,0,0,0,0,11,0,11,0,0,0,0,11,0],[16,0,0,0,0,0,0,7,0,11,0,0,0,0,7,0] >;

C2×He3⋊C9 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes C_9
% in TeX

G:=Group("C2xHe3:C9");
// GroupNames label

G:=SmallGroup(486,77);
// by ID

G=gap.SmallGroup(486,77);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,2169,735]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^9=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e^-1=b*c^-1,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*c^-1*d>;
// generators/relations

׿
×
𝔽