Extensions 1→N→G→Q→1 with N=He3 and Q=C18

Direct product G=N×Q with N=He3 and Q=C18
dρLabelID
C18×He3162C18xHe3486,194

Semidirect products G=N:Q with N=He3 and Q=C18
extensionφ:Q→Out NdρLabelID
He3⋊C18 = He3⋊C18φ: C18/C3C6 ⊆ Out He381He3:C18486,24
He32C18 = C2×He3⋊C9φ: C18/C6C3 ⊆ Out He3162He3:2C18486,77
He33C18 = C9×C32⋊C6φ: C18/C9C2 ⊆ Out He3546He3:3C18486,98
He34C18 = C9×He3⋊C2φ: C18/C9C2 ⊆ Out He381He3:4C18486,143

Non-split extensions G=N.Q with N=He3 and Q=C18
extensionφ:Q→Out NdρLabelID
He3.1C18 = He3.C18φ: C18/C3C6 ⊆ Out He3813He3.1C18486,26
He3.2C18 = He3.2C18φ: C18/C3C6 ⊆ Out He3813He3.2C18486,28
He3.3C18 = C2×C9.5He3φ: C18/C6C3 ⊆ Out He31623He3.3C18486,79
He3.4C18 = C2×C9.6He3φ: C18/C6C3 ⊆ Out He31623He3.4C18486,80
He3.5C18 = He3.5C18φ: C18/C9C2 ⊆ Out He3813He3.5C18486,164
He3.6C18 = C2×C27○He3φ: trivial image1623He3.6C18486,209

׿
×
𝔽