direct product, metabelian, supersoluble, monomial
Aliases: C3×C27⋊C6, D27⋊C32, C33.4D9, C27⋊(C3×C6), (C3×D27)⋊C3, C27⋊C3⋊4C6, (C3×C27)⋊4C6, C9.4(S3×C32), C32.8(C3×D9), C3.3(C32×D9), (C32×C9).18S3, (C3×C27⋊C3)⋊1C2, (C3×C9).22(C3×S3), SmallGroup(486,113)
Series: Derived ►Chief ►Lower central ►Upper central
C27 — C3×C27⋊C6 |
Generators and relations for C3×C27⋊C6
G = < a,b,c | a3=b27=c6=1, ab=ba, ac=ca, cbc-1=b17 >
Subgroups: 312 in 66 conjugacy classes, 26 normal (14 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3×S3, C3×C6, C27, C27, C3×C9, C3×C9, C3×C9, C33, D27, C3×D9, S3×C32, C3×C27, C3×C27, C27⋊C3, C27⋊C3, C32×C9, C3×D27, C27⋊C6, C32×D9, C3×C27⋊C3, C3×C27⋊C6
Quotients: C1, C2, C3, S3, C6, C32, D9, C3×S3, C3×C6, C3×D9, S3×C32, C27⋊C6, C32×D9, C3×C27⋊C6
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 30 19 39 10 48)(2 38)(3 46 12 37 21 28)(4 54 22 36 13 45)(5 35)(6 43 15 34 24 52)(7 51 25 33 16 42)(8 32)(9 40 18 31 27 49)(11 29)(14 53)(17 50)(20 47)(23 44)(26 41)
G:=sub<Sym(54)| (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,30,19,39,10,48)(2,38)(3,46,12,37,21,28)(4,54,22,36,13,45)(5,35)(6,43,15,34,24,52)(7,51,25,33,16,42)(8,32)(9,40,18,31,27,49)(11,29)(14,53)(17,50)(20,47)(23,44)(26,41)>;
G:=Group( (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,30,19,39,10,48)(2,38)(3,46,12,37,21,28)(4,54,22,36,13,45)(5,35)(6,43,15,34,24,52)(7,51,25,33,16,42)(8,32)(9,40,18,31,27,49)(11,29)(14,53)(17,50)(20,47)(23,44)(26,41) );
G=PermutationGroup([[(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,30,19,39,10,48),(2,38),(3,46,12,37,21,28),(4,54,22,36,13,45),(5,35),(6,43,15,34,24,52),(7,51,25,33,16,42),(8,32),(9,40,18,31,27,49),(11,29),(14,53),(17,50),(20,47),(23,44),(26,41)]])
63 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3K | 6A | ··· | 6H | 9A | ··· | 9I | 9J | ··· | 9O | 27A | ··· | 27AA |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 27 | ··· | 27 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 27 | ··· | 27 | 2 | ··· | 2 | 6 | ··· | 6 | 6 | ··· | 6 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 |
type | + | + | + | + | + | |||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | S3 | C3×S3 | D9 | C3×D9 | C27⋊C6 | C3×C27⋊C6 |
kernel | C3×C27⋊C6 | C3×C27⋊C3 | C3×D27 | C27⋊C6 | C3×C27 | C27⋊C3 | C32×C9 | C3×C9 | C33 | C32 | C3 | C1 |
# reps | 1 | 1 | 2 | 6 | 2 | 6 | 1 | 8 | 3 | 24 | 3 | 6 |
Matrix representation of C3×C27⋊C6 ►in GL6(𝔽109)
63 | 0 | 0 | 0 | 0 | 0 |
0 | 63 | 0 | 0 | 0 | 0 |
0 | 0 | 63 | 0 | 0 | 0 |
0 | 0 | 0 | 63 | 0 | 0 |
0 | 0 | 0 | 0 | 63 | 0 |
0 | 0 | 0 | 0 | 0 | 63 |
0 | 63 | 0 | 0 | 0 | 0 |
0 | 0 | 63 | 0 | 0 | 0 |
38 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 66 |
0 | 0 | 0 | 45 | 0 | 0 |
0 | 0 | 0 | 0 | 45 | 0 |
0 | 0 | 0 | 45 | 0 | 0 |
0 | 0 | 0 | 0 | 63 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
45 | 0 | 0 | 0 | 0 | 0 |
0 | 63 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(109))| [63,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63],[0,0,38,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,0,0,45,0,0,0,0,0,0,45,0,0,0,66,0,0],[0,0,0,45,0,0,0,0,0,0,63,0,0,0,0,0,0,1,45,0,0,0,0,0,0,63,0,0,0,0,0,0,1,0,0,0] >;
C3×C27⋊C6 in GAP, Magma, Sage, TeX
C_3\times C_{27}\rtimes C_6
% in TeX
G:=Group("C3xC27:C6");
// GroupNames label
G:=SmallGroup(486,113);
// by ID
G=gap.SmallGroup(486,113);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,2163,2169,381,8104,208,11669]);
// Polycyclic
G:=Group<a,b,c|a^3=b^27=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^17>;
// generators/relations