Copied to
clipboard

G = C3×C27⋊C6order 486 = 2·35

Direct product of C3 and C27⋊C6

direct product, metabelian, supersoluble, monomial

Aliases: C3×C27⋊C6, D27⋊C32, C33.4D9, C27⋊(C3×C6), (C3×D27)⋊C3, C27⋊C34C6, (C3×C27)⋊4C6, C9.4(S3×C32), C32.8(C3×D9), C3.3(C32×D9), (C32×C9).18S3, (C3×C27⋊C3)⋊1C2, (C3×C9).22(C3×S3), SmallGroup(486,113)

Series: Derived Chief Lower central Upper central

C1C27 — C3×C27⋊C6
C1C3C9C27C3×C27C3×C27⋊C3 — C3×C27⋊C6
C27 — C3×C27⋊C6
C1C3

Generators and relations for C3×C27⋊C6
 G = < a,b,c | a3=b27=c6=1, ab=ba, ac=ca, cbc-1=b17 >

Subgroups: 312 in 66 conjugacy classes, 26 normal (14 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3×S3, C3×C6, C27, C27, C3×C9, C3×C9, C3×C9, C33, D27, C3×D9, S3×C32, C3×C27, C3×C27, C27⋊C3, C27⋊C3, C32×C9, C3×D27, C27⋊C6, C32×D9, C3×C27⋊C3, C3×C27⋊C6
Quotients: C1, C2, C3, S3, C6, C32, D9, C3×S3, C3×C6, C3×D9, S3×C32, C27⋊C6, C32×D9, C3×C27⋊C6

Smallest permutation representation of C3×C27⋊C6
On 54 points
Generators in S54
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 30 19 39 10 48)(2 38)(3 46 12 37 21 28)(4 54 22 36 13 45)(5 35)(6 43 15 34 24 52)(7 51 25 33 16 42)(8 32)(9 40 18 31 27 49)(11 29)(14 53)(17 50)(20 47)(23 44)(26 41)

G:=sub<Sym(54)| (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,30,19,39,10,48)(2,38)(3,46,12,37,21,28)(4,54,22,36,13,45)(5,35)(6,43,15,34,24,52)(7,51,25,33,16,42)(8,32)(9,40,18,31,27,49)(11,29)(14,53)(17,50)(20,47)(23,44)(26,41)>;

G:=Group( (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,30,19,39,10,48)(2,38)(3,46,12,37,21,28)(4,54,22,36,13,45)(5,35)(6,43,15,34,24,52)(7,51,25,33,16,42)(8,32)(9,40,18,31,27,49)(11,29)(14,53)(17,50)(20,47)(23,44)(26,41) );

G=PermutationGroup([[(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,30,19,39,10,48),(2,38),(3,46,12,37,21,28),(4,54,22,36,13,45),(5,35),(6,43,15,34,24,52),(7,51,25,33,16,42),(8,32),(9,40,18,31,27,49),(11,29),(14,53),(17,50),(20,47),(23,44),(26,41)]])

63 conjugacy classes

class 1  2 3A3B3C3D3E3F···3K6A···6H9A···9I9J···9O27A···27AA
order12333333···36···69···99···927···27
size127112223···327···272···26···66···6

63 irreducible representations

dim111111222266
type+++++
imageC1C2C3C3C6C6S3C3×S3D9C3×D9C27⋊C6C3×C27⋊C6
kernelC3×C27⋊C6C3×C27⋊C3C3×D27C27⋊C6C3×C27C27⋊C3C32×C9C3×C9C33C32C3C1
# reps1126261832436

Matrix representation of C3×C27⋊C6 in GL6(𝔽109)

6300000
0630000
0063000
0006300
0000630
0000063
,
0630000
0063000
3800000
0000066
0004500
0000450
,
0004500
0000630
000001
4500000
0630000
001000

G:=sub<GL(6,GF(109))| [63,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63],[0,0,38,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,0,0,45,0,0,0,0,0,0,45,0,0,0,66,0,0],[0,0,0,45,0,0,0,0,0,0,63,0,0,0,0,0,0,1,45,0,0,0,0,0,0,63,0,0,0,0,0,0,1,0,0,0] >;

C3×C27⋊C6 in GAP, Magma, Sage, TeX

C_3\times C_{27}\rtimes C_6
% in TeX

G:=Group("C3xC27:C6");
// GroupNames label

G:=SmallGroup(486,113);
// by ID

G=gap.SmallGroup(486,113);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,2163,2169,381,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c|a^3=b^27=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^17>;
// generators/relations

׿
×
𝔽