Copied to
clipboard

G = He3.C18order 486 = 2·35

1st non-split extension by He3 of C18 acting via C18/C3=C6

non-abelian, supersoluble, monomial

Aliases: He3.1C18, (C3×C27)⋊2S3, C9○He3.1C6, C32.2(S3×C9), C9.5He33C2, C9.7(C32⋊C6), He3⋊C2.1C9, C3.7(C32⋊C18), He3.4C6.1C3, (C3×C9).23(C3×S3), SmallGroup(486,26)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3.C18
C1C3C32He3C9○He3C9.5He3 — He3.C18
He3 — He3.C18
C1C9

Generators and relations for He3.C18
 G = < a,b,c,d | a3=b3=c3=1, d18=b, ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=a-1c-1 >

9C2
3C3
9C3
3S3
9S3
9C6
2C9
3C32
6C9
3C3×S3
9C18
9C3×S3
23- 1+2
3C3×C9
3C27
6C27
63- 1+2
3S3×C9
9C54
9S3×C9
2C27⋊C3
3S3×C27

Smallest permutation representation of He3.C18
On 81 points
Generators in S81
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 46 64)(30 48 66)(32 50 68)(34 52 70)(36 54 72)(38 56 74)(40 58 76)(42 60 78)(44 62 80)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 64)(29 47 65)(30 48 66)(31 49 67)(32 50 68)(33 51 69)(34 52 70)(35 53 71)(36 54 72)(37 55 73)(38 56 74)(39 57 75)(40 58 76)(41 59 77)(42 60 78)(43 61 79)(44 62 80)(45 63 81)
(1 58 31)(2 50 77)(3 42 69)(4 34 61)(5 80 53)(6 72 45)(7 64 37)(8 56 29)(9 48 75)(10 40 67)(11 32 59)(12 78 51)(13 70 43)(14 62 35)(15 54 81)(16 46 73)(17 38 65)(18 30 57)(19 76 49)(20 68 41)(21 60 33)(22 52 79)(23 44 71)(24 36 63)(25 28 55)(26 74 47)(27 66 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,64)(30,48,66)(32,50,68)(34,52,70)(36,54,72)(38,56,74)(40,58,76)(42,60,78)(44,62,80), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,64)(29,47,65)(30,48,66)(31,49,67)(32,50,68)(33,51,69)(34,52,70)(35,53,71)(36,54,72)(37,55,73)(38,56,74)(39,57,75)(40,58,76)(41,59,77)(42,60,78)(43,61,79)(44,62,80)(45,63,81), (1,58,31)(2,50,77)(3,42,69)(4,34,61)(5,80,53)(6,72,45)(7,64,37)(8,56,29)(9,48,75)(10,40,67)(11,32,59)(12,78,51)(13,70,43)(14,62,35)(15,54,81)(16,46,73)(17,38,65)(18,30,57)(19,76,49)(20,68,41)(21,60,33)(22,52,79)(23,44,71)(24,36,63)(25,28,55)(26,74,47)(27,66,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,64)(30,48,66)(32,50,68)(34,52,70)(36,54,72)(38,56,74)(40,58,76)(42,60,78)(44,62,80), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,64)(29,47,65)(30,48,66)(31,49,67)(32,50,68)(33,51,69)(34,52,70)(35,53,71)(36,54,72)(37,55,73)(38,56,74)(39,57,75)(40,58,76)(41,59,77)(42,60,78)(43,61,79)(44,62,80)(45,63,81), (1,58,31)(2,50,77)(3,42,69)(4,34,61)(5,80,53)(6,72,45)(7,64,37)(8,56,29)(9,48,75)(10,40,67)(11,32,59)(12,78,51)(13,70,43)(14,62,35)(15,54,81)(16,46,73)(17,38,65)(18,30,57)(19,76,49)(20,68,41)(21,60,33)(22,52,79)(23,44,71)(24,36,63)(25,28,55)(26,74,47)(27,66,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,46,64),(30,48,66),(32,50,68),(34,52,70),(36,54,72),(38,56,74),(40,58,76),(42,60,78),(44,62,80)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,64),(29,47,65),(30,48,66),(31,49,67),(32,50,68),(33,51,69),(34,52,70),(35,53,71),(36,54,72),(37,55,73),(38,56,74),(39,57,75),(40,58,76),(41,59,77),(42,60,78),(43,61,79),(44,62,80),(45,63,81)], [(1,58,31),(2,50,77),(3,42,69),(4,34,61),(5,80,53),(6,72,45),(7,64,37),(8,56,29),(9,48,75),(10,40,67),(11,32,59),(12,78,51),(13,70,43),(14,62,35),(15,54,81),(16,46,73),(17,38,65),(18,30,57),(19,76,49),(20,68,41),(21,60,33),(22,52,79),(23,44,71),(24,36,63),(25,28,55),(26,74,47),(27,66,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)]])

66 conjugacy classes

class 1  2 3A3B3C3D6A6B9A···9F9G9H9I9J18A···18F27A···27R27S···27X54A···54R
order123333669···9999918···1827···2727···2754···54
size1911618991···16618189···93···318···189···9

66 irreducible representations

dim111111222366
type++++
imageC1C2C3C6C9C18S3C3×S3S3×C9He3.C18C32⋊C6C32⋊C18
kernelHe3.C18C9.5He3He3.4C6C9○He3He3⋊C2He3C3×C27C3×C9C32C1C9C3
# reps1122661263612

Matrix representation of He3.C18 in GL3(𝔽109) generated by

63046
0145
0045
,
4500
0450
0045
,
10810
10800
6201
,
2610683
01060
0773
G:=sub<GL(3,GF(109))| [63,0,0,0,1,0,46,45,45],[45,0,0,0,45,0,0,0,45],[108,108,62,1,0,0,0,0,1],[26,0,0,106,106,77,83,0,3] >;

He3.C18 in GAP, Magma, Sage, TeX

{\rm He}_3.C_{18}
% in TeX

G:=Group("He3.C18");
// GroupNames label

G:=SmallGroup(486,26);
// by ID

G=gap.SmallGroup(486,26);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,500,867,873,8104,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^18=b,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*c^-1>;
// generators/relations

Export

Subgroup lattice of He3.C18 in TeX

׿
×
𝔽