metabelian, supersoluble, monomial
Aliases: He3.1D9, C27⋊S3⋊2C3, (C3×C27)⋊2C6, C9.1(C9⋊C6), C9○He3.1S3, C9.5He3⋊2C2, C32.2(C3×D9), C9.4(C32⋊C6), C3.3(C32⋊D9), (C3×C9).36(C3×S3), SmallGroup(486,27)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C27 — He3.D9 |
Generators and relations for He3.D9
G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=ebe=b-1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, dcd-1=ece=ab-1c, ede=bd8 >
Character table of He3.D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | 27J | 27K | 27L | 27M | 27N | 27O | |
size | 1 | 81 | 2 | 6 | 9 | 9 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ9 | ζ98+ζ97 | ζ94+ζ92 | ζ97+ζ95 | ζ98+ζ94 | ζ92+ζ9 | complex lifted from C3×D9 |
ρ14 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ97 | ζ94+ζ92 | ζ95+ζ9 | ζ98+ζ94 | ζ92+ζ9 | ζ97+ζ95 | complex lifted from C3×D9 |
ρ15 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ94+ζ92 | ζ95+ζ9 | ζ98+ζ97 | ζ92+ζ9 | ζ97+ζ95 | ζ98+ζ94 | complex lifted from C3×D9 |
ρ16 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ95 | ζ98+ζ94 | ζ92+ζ9 | ζ98+ζ97 | ζ94+ζ92 | ζ95+ζ9 | complex lifted from C3×D9 |
ρ17 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ94 | ζ92+ζ9 | ζ97+ζ95 | ζ94+ζ92 | ζ95+ζ9 | ζ98+ζ97 | complex lifted from C3×D9 |
ρ18 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ92+ζ9 | ζ97+ζ95 | ζ98+ζ94 | ζ95+ζ9 | ζ98+ζ97 | ζ94+ζ92 | complex lifted from C3×D9 |
ρ19 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 6 | 6 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ20 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C9⋊C6 |
ρ21 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C9⋊C6 |
ρ22 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | ζ2717+2ζ2710-ζ278+ζ27 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2726-ζ2710+ζ278+ζ27 | -ζ2726+2ζ2719+ζ2710+ζ278 | 2ζ2720-ζ2716+ζ277+ζ272 | ζ2725+ζ2711-ζ277+2ζ272 | 2ζ2716+ζ2711+ζ277-ζ272 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | ζ2725+ζ2711-ζ277+2ζ272 | -ζ2726+2ζ2719+ζ2710+ζ278 | 2ζ2716+ζ2711+ζ277-ζ272 | 2ζ2720-ζ2716+ζ277+ζ272 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | -ζ2723+2ζ2722+ζ2713+ζ275 | 2ζ2720-ζ2716+ζ277+ζ272 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | -ζ2726+2ζ2719+ζ2710+ζ278 | ζ2725+ζ2711-ζ277+2ζ272 | 2ζ2716+ζ2711+ζ277-ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2714+2ζ2713-ζ275+ζ274 | ζ2725+ζ2711-ζ277+2ζ272 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | 2ζ2726-ζ2710+ζ278+ζ27 | -ζ2726+2ζ2719+ζ2710+ζ278 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2716+ζ2711+ζ277-ζ272 | 2ζ2720-ζ2716+ζ277+ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | -ζ2726+2ζ2719+ζ2710+ζ278 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | 2ζ2716+ζ2711+ζ277-ζ272 | 2ζ2720-ζ2716+ζ277+ζ272 | ζ2725+ζ2711-ζ277+2ζ272 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | 2ζ2726-ζ2710+ζ278+ζ27 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2726+2ζ2719+ζ2710+ζ278 | ζ2717+2ζ2710-ζ278+ζ27 | ζ2725+ζ2711-ζ277+2ζ272 | 2ζ2716+ζ2711+ζ277-ζ272 | 2ζ2720-ζ2716+ζ277+ζ272 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | 2ζ2720-ζ2716+ζ277+ζ272 | 2ζ2726-ζ2710+ζ278+ζ27 | ζ2725+ζ2711-ζ277+2ζ272 | 2ζ2716+ζ2711+ζ277-ζ272 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | -ζ2726+2ζ2719+ζ2710+ζ278 | ζ2717+2ζ2710-ζ278+ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | 2ζ2716+ζ2711+ζ277-ζ272 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2720-ζ2716+ζ277+ζ272 | ζ2725+ζ2711-ζ277+2ζ272 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | 2ζ2726-ζ2710+ζ278+ζ27 | -ζ2726+2ζ2719+ζ2710+ζ278 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | 2ζ2723-ζ2713+ζ275+ζ274 | 2ζ2716+ζ2711+ζ277-ζ272 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | -ζ2726+2ζ2719+ζ2710+ζ278 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | 2ζ2720-ζ2716+ζ277+ζ272 | ζ2725+ζ2711-ζ277+2ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 63 34)(2 64 35)(3 65 36)(4 66 37)(5 67 38)(6 68 39)(7 69 40)(8 70 41)(9 71 42)(10 72 43)(11 73 44)(12 74 45)(13 75 46)(14 76 47)(15 77 48)(16 78 49)(17 79 50)(18 80 51)(19 81 52)(20 55 53)(21 56 54)(22 57 28)(23 58 29)(24 59 30)(25 60 31)(26 61 32)(27 62 33)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)(55 73 64)(56 74 65)(57 75 66)(58 76 67)(59 77 68)(60 78 69)(61 79 70)(62 80 71)(63 81 72)
(2 64 53)(3 36 74)(5 67 29)(6 39 77)(8 70 32)(9 42 80)(11 73 35)(12 45 56)(14 76 38)(15 48 59)(17 79 41)(18 51 62)(20 55 44)(21 54 65)(23 58 47)(24 30 68)(26 61 50)(27 33 71)(28 37 46)(31 40 49)(34 43 52)(57 75 66)(60 78 69)(63 81 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 59)(29 58)(30 57)(31 56)(32 55)(33 81)(34 80)(35 79)(36 78)(37 77)(38 76)(39 75)(40 74)(41 73)(42 72)(43 71)(44 70)(45 69)(46 68)(47 67)(48 66)(49 65)(50 64)(51 63)(52 62)(53 61)(54 60)
G:=sub<Sym(81)| (1,63,34)(2,64,35)(3,65,36)(4,66,37)(5,67,38)(6,68,39)(7,69,40)(8,70,41)(9,71,42)(10,72,43)(11,73,44)(12,74,45)(13,75,46)(14,76,47)(15,77,48)(16,78,49)(17,79,50)(18,80,51)(19,81,52)(20,55,53)(21,56,54)(22,57,28)(23,58,29)(24,59,30)(25,60,31)(26,61,32)(27,62,33), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (2,64,53)(3,36,74)(5,67,29)(6,39,77)(8,70,32)(9,42,80)(11,73,35)(12,45,56)(14,76,38)(15,48,59)(17,79,41)(18,51,62)(20,55,44)(21,54,65)(23,58,47)(24,30,68)(26,61,50)(27,33,71)(28,37,46)(31,40,49)(34,43,52)(57,75,66)(60,78,69)(63,81,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,59)(29,58)(30,57)(31,56)(32,55)(33,81)(34,80)(35,79)(36,78)(37,77)(38,76)(39,75)(40,74)(41,73)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,64)(51,63)(52,62)(53,61)(54,60)>;
G:=Group( (1,63,34)(2,64,35)(3,65,36)(4,66,37)(5,67,38)(6,68,39)(7,69,40)(8,70,41)(9,71,42)(10,72,43)(11,73,44)(12,74,45)(13,75,46)(14,76,47)(15,77,48)(16,78,49)(17,79,50)(18,80,51)(19,81,52)(20,55,53)(21,56,54)(22,57,28)(23,58,29)(24,59,30)(25,60,31)(26,61,32)(27,62,33), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (2,64,53)(3,36,74)(5,67,29)(6,39,77)(8,70,32)(9,42,80)(11,73,35)(12,45,56)(14,76,38)(15,48,59)(17,79,41)(18,51,62)(20,55,44)(21,54,65)(23,58,47)(24,30,68)(26,61,50)(27,33,71)(28,37,46)(31,40,49)(34,43,52)(57,75,66)(60,78,69)(63,81,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,59)(29,58)(30,57)(31,56)(32,55)(33,81)(34,80)(35,79)(36,78)(37,77)(38,76)(39,75)(40,74)(41,73)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,64)(51,63)(52,62)(53,61)(54,60) );
G=PermutationGroup([[(1,63,34),(2,64,35),(3,65,36),(4,66,37),(5,67,38),(6,68,39),(7,69,40),(8,70,41),(9,71,42),(10,72,43),(11,73,44),(12,74,45),(13,75,46),(14,76,47),(15,77,48),(16,78,49),(17,79,50),(18,80,51),(19,81,52),(20,55,53),(21,56,54),(22,57,28),(23,58,29),(24,59,30),(25,60,31),(26,61,32),(27,62,33)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45),(55,73,64),(56,74,65),(57,75,66),(58,76,67),(59,77,68),(60,78,69),(61,79,70),(62,80,71),(63,81,72)], [(2,64,53),(3,36,74),(5,67,29),(6,39,77),(8,70,32),(9,42,80),(11,73,35),(12,45,56),(14,76,38),(15,48,59),(17,79,41),(18,51,62),(20,55,44),(21,54,65),(23,58,47),(24,30,68),(26,61,50),(27,33,71),(28,37,46),(31,40,49),(34,43,52),(57,75,66),(60,78,69),(63,81,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,59),(29,58),(30,57),(31,56),(32,55),(33,81),(34,80),(35,79),(36,78),(37,77),(38,76),(39,75),(40,74),(41,73),(42,72),(43,71),(44,70),(45,69),(46,68),(47,67),(48,66),(49,65),(50,64),(51,63),(52,62),(53,61),(54,60)]])
Matrix representation of He3.D9 ►in GL6(𝔽109)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
108 | 1 | 0 | 0 | 0 | 0 |
108 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 1 | 0 | 0 |
0 | 0 | 108 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 1 |
0 | 0 | 0 | 0 | 108 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 108 | 0 | 0 |
0 | 0 | 1 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 1 |
0 | 0 | 0 | 0 | 108 | 0 |
1 | 8 | 8 | 100 | 1 | 8 |
101 | 9 | 9 | 108 | 101 | 9 |
1 | 8 | 1 | 8 | 8 | 100 |
101 | 9 | 101 | 9 | 9 | 108 |
8 | 100 | 1 | 8 | 1 | 8 |
9 | 108 | 101 | 9 | 101 | 9 |
9 | 108 | 108 | 101 | 9 | 108 |
8 | 100 | 100 | 1 | 8 | 100 |
108 | 101 | 9 | 108 | 9 | 108 |
100 | 1 | 8 | 100 | 8 | 100 |
9 | 108 | 9 | 108 | 108 | 101 |
8 | 100 | 8 | 100 | 100 | 1 |
G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[108,108,0,0,0,0,1,0,0,0,0,0,0,0,108,108,0,0,0,0,1,0,0,0,0,0,0,0,108,108,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,108,108,0,0,0,0,0,0,108,108,0,0,0,0,1,0],[1,101,1,101,8,9,8,9,8,9,100,108,8,9,1,101,1,101,100,108,8,9,8,9,1,101,8,9,1,101,8,9,100,108,8,9],[9,8,108,100,9,8,108,100,101,1,108,100,108,100,9,8,9,8,101,1,108,100,108,100,9,8,9,8,108,100,108,100,108,100,101,1] >;
He3.D9 in GAP, Magma, Sage, TeX
{\rm He}_3.D_9
% in TeX
G:=Group("He3.D9");
// GroupNames label
G:=SmallGroup(486,27);
// by ID
G=gap.SmallGroup(486,27);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,1310,867,2169,12964,118,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=e*b*e=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=e*c*e=a*b^-1*c,e*d*e=b*d^8>;
// generators/relations
Export
Subgroup lattice of He3.D9 in TeX
Character table of He3.D9 in TeX