d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3xS3xHe3 | 54 | C3xS3xHe3 | 486,223 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3xHe3):1S3 = C3.C3wrS3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3):1S3 | 486,4 |
(C3xHe3):2S3 = (C3xHe3):S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3):2S3 | 486,43 | |
(C3xHe3):3S3 = C34:C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 18 | 6 | (C3xHe3):3S3 | 486,102 |
(C3xHe3):4S3 = C3xC33:C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 18 | 6 | (C3xHe3):4S3 | 486,116 |
(C3xHe3):5S3 = C3wrC3:C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 9 | (C3xHe3):5S3 | 486,126 |
(C3xHe3):6S3 = (C3xHe3):C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3):6S3 | 486,127 |
(C3xHe3):7S3 = C34:3S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 18 | 6 | (C3xHe3):7S3 | 486,145 |
(C3xHe3):8S3 = C34:4C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | (C3xHe3):8S3 | 486,146 | |
(C3xHe3):9S3 = C3xC33:S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 18 | 6 | (C3xHe3):9S3 | 486,165 |
(C3xHe3):10S3 = C34:5C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | (C3xHe3):10S3 | 486,167 | |
(C3xHe3):11S3 = C3xHe3:S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3):11S3 | 486,171 |
(C3xHe3):12S3 = C33:(C3xS3) | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3):12S3 | 486,176 |
(C3xHe3):13S3 = He3:(C3xS3) | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3):13S3 | 486,178 |
(C3xHe3):14S3 = C34:6S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | (C3xHe3):14S3 | 486,183 | |
(C3xHe3):15S3 = C34:7S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | (C3xHe3):15S3 | 486,185 | |
(C3xHe3):16S3 = C3:(He3:S3) | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3):16S3 | 486,187 | |
(C3xHe3):17S3 = 3+ 1+4:C2 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3):17S3 | 486,236 |
(C3xHe3):18S3 = 3+ 1+4:2C2 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 9 | (C3xHe3):18S3 | 486,237 |
(C3xHe3):19S3 = 3+ 1+4:3C2 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 9 | (C3xHe3):19S3 | 486,249 |
(C3xHe3):20S3 = C3xHe3:4S3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | (C3xHe3):20S3 | 486,229 | |
(C3xHe3):21S3 = C3:S3xHe3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | (C3xHe3):21S3 | 486,231 | |
(C3xHe3):22S3 = C34:10C6 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 81 | (C3xHe3):22S3 | 486,242 | |
(C3xHe3):23S3 = C3xHe3:5S3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | (C3xHe3):23S3 | 486,243 | |
(C3xHe3):24S3 = C34:13S3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | (C3xHe3):24S3 | 486,248 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3xHe3).1S3 = C32:C9:C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 18 | 6 | (C3xHe3).1S3 | 486,6 |
(C3xHe3).2S3 = C3.3C3wrS3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).2S3 | 486,8 |
(C3xHe3).3S3 = He3:D9 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).3S3 | 486,25 | |
(C3xHe3).4S3 = (C3xHe3).S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).4S3 | 486,44 | |
(C3xHe3).5S3 = C32:C9:6S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).5S3 | 486,46 | |
(C3xHe3).6S3 = He3:2D9 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).6S3 | 486,56 | |
(C3xHe3).7S3 = D9:He3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).7S3 | 486,106 |
(C3xHe3).8S3 = C3xHe3.S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).8S3 | 486,119 |
(C3xHe3).9S3 = C3xHe3.2S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).9S3 | 486,122 |
(C3xHe3).10S3 = C9:S3:C32 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3).10S3 | 486,129 |
(C3xHe3).11S3 = He3.(C3xS3) | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3).11S3 | 486,131 |
(C3xHe3).12S3 = C9:He3:2C2 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).12S3 | 486,148 | |
(C3xHe3).13S3 = (C32xC9):S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).13S3 | 486,149 |
(C3xHe3).14S3 = (C32xC9):C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).14S3 | 486,151 | |
(C3xHe3).15S3 = C3xHe3.3S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).15S3 | 486,168 |
(C3xHe3).16S3 = C32:4D9:C3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).16S3 | 486,170 | |
(C3xHe3).17S3 = He3:C3:3S3 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).17S3 | 486,173 | |
(C3xHe3).18S3 = He3.C3:2C6 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3).18S3 | 486,177 |
(C3xHe3).19S3 = He3.(C3:S3) | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 81 | (C3xHe3).19S3 | 486,186 | |
(C3xHe3).20S3 = 3- 1+4:C2 | φ: S3/C1 → S3 ⊆ Out C3xHe3 | 27 | 18+ | (C3xHe3).20S3 | 486,238 |
(C3xHe3).21S3 = D9xHe3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).21S3 | 486,99 |
(C3xHe3).22S3 = He3:3D9 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 81 | (C3xHe3).22S3 | 486,142 | |
(C3xHe3).23S3 = He3:4D9 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).23S3 | 486,182 |
(C3xHe3).24S3 = C3xHe3.4S3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 54 | 6 | (C3xHe3).24S3 | 486,234 |
(C3xHe3).25S3 = C9oHe3:3S3 | φ: S3/C3 → C2 ⊆ Out C3xHe3 | 81 | (C3xHe3).25S3 | 486,245 |