extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×He3)⋊1S3 = C3.C3≀S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3):1S3 | 486,4 |
(C3×He3)⋊2S3 = (C3×He3)⋊S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3):2S3 | 486,43 |
(C3×He3)⋊3S3 = C34⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 18 | 6 | (C3xHe3):3S3 | 486,102 |
(C3×He3)⋊4S3 = C3×C33⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 18 | 6 | (C3xHe3):4S3 | 486,116 |
(C3×He3)⋊5S3 = C3≀C3⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 9 | (C3xHe3):5S3 | 486,126 |
(C3×He3)⋊6S3 = (C3×He3)⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3):6S3 | 486,127 |
(C3×He3)⋊7S3 = C34⋊3S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 18 | 6 | (C3xHe3):7S3 | 486,145 |
(C3×He3)⋊8S3 = C34⋊4C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | | (C3xHe3):8S3 | 486,146 |
(C3×He3)⋊9S3 = C3×C33⋊S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 18 | 6 | (C3xHe3):9S3 | 486,165 |
(C3×He3)⋊10S3 = C34⋊5C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | | (C3xHe3):10S3 | 486,167 |
(C3×He3)⋊11S3 = C3×He3⋊S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3):11S3 | 486,171 |
(C3×He3)⋊12S3 = C33⋊(C3×S3) | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3):12S3 | 486,176 |
(C3×He3)⋊13S3 = He3⋊(C3×S3) | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3):13S3 | 486,178 |
(C3×He3)⋊14S3 = C34⋊6S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | | (C3xHe3):14S3 | 486,183 |
(C3×He3)⋊15S3 = C34⋊7S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | | (C3xHe3):15S3 | 486,185 |
(C3×He3)⋊16S3 = C3⋊(He3⋊S3) | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3):16S3 | 486,187 |
(C3×He3)⋊17S3 = 3+ 1+4⋊C2 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3):17S3 | 486,236 |
(C3×He3)⋊18S3 = 3+ 1+4⋊2C2 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 9 | (C3xHe3):18S3 | 486,237 |
(C3×He3)⋊19S3 = 3+ 1+4⋊3C2 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 9 | (C3xHe3):19S3 | 486,249 |
(C3×He3)⋊20S3 = C3×He3⋊4S3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | | (C3xHe3):20S3 | 486,229 |
(C3×He3)⋊21S3 = C3⋊S3×He3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | | (C3xHe3):21S3 | 486,231 |
(C3×He3)⋊22S3 = C34⋊10C6 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 81 | | (C3xHe3):22S3 | 486,242 |
(C3×He3)⋊23S3 = C3×He3⋊5S3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | | (C3xHe3):23S3 | 486,243 |
(C3×He3)⋊24S3 = C34⋊13S3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | | (C3xHe3):24S3 | 486,248 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×He3).1S3 = C32⋊C9⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 18 | 6 | (C3xHe3).1S3 | 486,6 |
(C3×He3).2S3 = C3.3C3≀S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).2S3 | 486,8 |
(C3×He3).3S3 = He3⋊D9 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).3S3 | 486,25 |
(C3×He3).4S3 = (C3×He3).S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).4S3 | 486,44 |
(C3×He3).5S3 = C32⋊C9⋊6S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).5S3 | 486,46 |
(C3×He3).6S3 = He3⋊2D9 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).6S3 | 486,56 |
(C3×He3).7S3 = D9⋊He3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).7S3 | 486,106 |
(C3×He3).8S3 = C3×He3.S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).8S3 | 486,119 |
(C3×He3).9S3 = C3×He3.2S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).9S3 | 486,122 |
(C3×He3).10S3 = C9⋊S3⋊C32 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3).10S3 | 486,129 |
(C3×He3).11S3 = He3.(C3×S3) | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3).11S3 | 486,131 |
(C3×He3).12S3 = C9⋊He3⋊2C2 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).12S3 | 486,148 |
(C3×He3).13S3 = (C32×C9)⋊S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).13S3 | 486,149 |
(C3×He3).14S3 = (C32×C9)⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).14S3 | 486,151 |
(C3×He3).15S3 = C3×He3.3S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).15S3 | 486,168 |
(C3×He3).16S3 = C32⋊4D9⋊C3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).16S3 | 486,170 |
(C3×He3).17S3 = He3⋊C3⋊3S3 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).17S3 | 486,173 |
(C3×He3).18S3 = He3.C3⋊2C6 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3).18S3 | 486,177 |
(C3×He3).19S3 = He3.(C3⋊S3) | φ: S3/C1 → S3 ⊆ Out C3×He3 | 81 | | (C3xHe3).19S3 | 486,186 |
(C3×He3).20S3 = 3- 1+4⋊C2 | φ: S3/C1 → S3 ⊆ Out C3×He3 | 27 | 18+ | (C3xHe3).20S3 | 486,238 |
(C3×He3).21S3 = D9×He3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).21S3 | 486,99 |
(C3×He3).22S3 = He3⋊3D9 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 81 | | (C3xHe3).22S3 | 486,142 |
(C3×He3).23S3 = He3⋊4D9 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).23S3 | 486,182 |
(C3×He3).24S3 = C3×He3.4S3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 54 | 6 | (C3xHe3).24S3 | 486,234 |
(C3×He3).25S3 = C9○He3⋊3S3 | φ: S3/C3 → C2 ⊆ Out C3×He3 | 81 | | (C3xHe3).25S3 | 486,245 |