extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×3- 1+2)⋊1S3 = (C3×He3).S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)):1S3 | 486,44 |
(C3×3- 1+2)⋊2S3 = C34.7S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 18 | 6 | (C3xES-(3,1)):2S3 | 486,147 |
(C3×3- 1+2)⋊3S3 = C9⋊He3⋊2C2 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)):3S3 | 486,148 |
(C3×3- 1+2)⋊4S3 = (C32×C9)⋊S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)):4S3 | 486,149 |
(C3×3- 1+2)⋊5S3 = C3×C33⋊S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 18 | 6 | (C3xES-(3,1)):5S3 | 486,165 |
(C3×3- 1+2)⋊6S3 = C3×He3.3S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)):6S3 | 486,168 |
(C3×3- 1+2)⋊7S3 = C33⋊(C3×S3) | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 18+ | (C3xES-(3,1)):7S3 | 486,176 |
(C3×3- 1+2)⋊8S3 = He3.C3⋊2C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 18+ | (C3xES-(3,1)):8S3 | 486,177 |
(C3×3- 1+2)⋊9S3 = He3⋊(C3×S3) | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 18+ | (C3xES-(3,1)):9S3 | 486,178 |
(C3×3- 1+2)⋊10S3 = C34⋊7S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | | (C3xES-(3,1)):10S3 | 486,185 |
(C3×3- 1+2)⋊11S3 = He3.(C3⋊S3) | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)):11S3 | 486,186 |
(C3×3- 1+2)⋊12S3 = 3- 1+4⋊C2 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 18+ | (C3xES-(3,1)):12S3 | 486,238 |
(C3×3- 1+2)⋊13S3 = C34.C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 18 | 6 | (C3xES-(3,1)):13S3 | 486,104 |
(C3×3- 1+2)⋊14S3 = C9⋊He3⋊C2 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)):14S3 | 486,107 |
(C3×3- 1+2)⋊15S3 = He3.C3⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 9 | (C3xES-(3,1)):15S3 | 486,128 |
(C3×3- 1+2)⋊16S3 = He3.(C3×C6) | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 9 | (C3xES-(3,1)):16S3 | 486,130 |
(C3×3- 1+2)⋊17S3 = C3≀C3.C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 9 | (C3xES-(3,1)):17S3 | 486,132 |
(C3×3- 1+2)⋊18S3 = 3- 1+4⋊2C2 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 9 | (C3xES-(3,1)):18S3 | 486,239 |
(C3×3- 1+2)⋊19S3 = C3×C33.S3 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 54 | | (C3xES-(3,1)):19S3 | 486,232 |
(C3×3- 1+2)⋊20S3 = C3×He3.4S3 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)):20S3 | 486,234 |
(C3×3- 1+2)⋊21S3 = C34.11S3 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)):21S3 | 486,244 |
(C3×3- 1+2)⋊22S3 = C9○He3⋊3S3 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)):22S3 | 486,245 |
(C3×3- 1+2)⋊23S3 = C3⋊S3×3- 1+2 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 54 | | (C3xES-(3,1)):23S3 | 486,233 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×3- 1+2).1S3 = C33.(C3⋊S3) | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).1S3 | 486,45 |
(C3×3- 1+2).2S3 = C3.(C33⋊S3) | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).2S3 | 486,47 |
(C3×3- 1+2).3S3 = 3- 1+2⋊D9 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).3S3 | 486,57 |
(C3×3- 1+2).4S3 = C92⋊10C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).4S3 | 486,154 |
(C3×3- 1+2).5S3 = C92⋊11C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).5S3 | 486,158 |
(C3×3- 1+2).6S3 = C92⋊12C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).6S3 | 486,159 |
(C3×3- 1+2).7S3 = C3×3- 1+2.S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)).7S3 | 486,174 |
(C3×3- 1+2).8S3 = C3.He3⋊C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 27 | 18+ | (C3xES-(3,1)).8S3 | 486,179 |
(C3×3- 1+2).9S3 = (C32×C9).S3 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).9S3 | 486,188 |
(C3×3- 1+2).10S3 = D9⋊3- 1+2 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)).10S3 | 486,108 |
(C3×3- 1+2).11S3 = C92⋊7C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)).11S3 | 486,109 |
(C3×3- 1+2).12S3 = C92⋊8C6 | φ: S3/C1 → S3 ⊆ Out C3×3- 1+2 | 18 | 6 | (C3xES-(3,1)).12S3 | 486,110 |
(C3×3- 1+2).13S3 = C92⋊9C6 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 81 | | (C3xES-(3,1)).13S3 | 486,144 |
(C3×3- 1+2).14S3 = D9×3- 1+2 | φ: S3/C3 → C2 ⊆ Out C3×3- 1+2 | 54 | 6 | (C3xES-(3,1)).14S3 | 486,101 |