direct product, metabelian, supersoluble, monomial
Aliases: D9×3- 1+2, C92⋊13C6, C9⋊2(C3×D9), (C9×D9)⋊2C3, (C32×C9).6C6, C3.6(C32×D9), C33.54(C3×S3), (C32×D9).1C3, (C3×D9).9C32, C32.10(C3×D9), (C9×3- 1+2)⋊3C2, C9⋊7(C2×3- 1+2), C32.34(S3×C32), C3.1(S3×3- 1+2), (C3×3- 1+2).14S3, (C3×C9).41(C3×C6), (C3×C9).43(C3×S3), SmallGroup(486,101)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D9×3- 1+2
G = < a,b,c,d | a9=b2=c9=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Subgroups: 238 in 73 conjugacy classes, 28 normal (16 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C9, C32, C32, D9, C18, C3×S3, C3×C6, C3×C9, C3×C9, C3×C9, 3- 1+2, 3- 1+2, C33, C3×D9, C3×D9, S3×C9, C2×3- 1+2, S3×C32, C92, C32⋊C9, C9⋊C9, C32×C9, C3×3- 1+2, C9×D9, C32×D9, S3×3- 1+2, C9×3- 1+2, D9×3- 1+2
Quotients: C1, C2, C3, S3, C6, C32, D9, C3×S3, C3×C6, 3- 1+2, C3×D9, C2×3- 1+2, S3×C32, C32×D9, S3×3- 1+2, D9×3- 1+2
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 30)(2 29)(3 28)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 45)(18 44)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 54)(27 53)
(1 23 14 4 26 17 7 20 11)(2 24 15 5 27 18 8 21 12)(3 25 16 6 19 10 9 22 13)(28 46 37 34 52 43 31 49 40)(29 47 38 35 53 44 32 50 41)(30 48 39 36 54 45 33 51 42)
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(37 43 40)(38 44 41)(39 45 42)(46 49 52)(47 50 53)(48 51 54)
G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,30)(2,29)(3,28)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,54)(27,53), (1,23,14,4,26,17,7,20,11)(2,24,15,5,27,18,8,21,12)(3,25,16,6,19,10,9,22,13)(28,46,37,34,52,43,31,49,40)(29,47,38,35,53,44,32,50,41)(30,48,39,36,54,45,33,51,42), (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,30)(2,29)(3,28)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,54)(27,53), (1,23,14,4,26,17,7,20,11)(2,24,15,5,27,18,8,21,12)(3,25,16,6,19,10,9,22,13)(28,46,37,34,52,43,31,49,40)(29,47,38,35,53,44,32,50,41)(30,48,39,36,54,45,33,51,42), (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,30),(2,29),(3,28),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,45),(18,44),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,54),(27,53)], [(1,23,14,4,26,17,7,20,11),(2,24,15,5,27,18,8,21,12),(3,25,16,6,19,10,9,22,13),(28,46,37,34,52,43,31,49,40),(29,47,38,35,53,44,32,50,41),(30,48,39,36,54,45,33,51,42)], [(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(37,43,40),(38,44,41),(39,45,42),(46,49,52),(47,50,53),(48,51,54)]])
66 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 6A | 6B | 6C | 6D | 9A | ··· | 9I | 9J | ··· | 9O | 9P | ··· | 9AS | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 9 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 9 | 9 | 27 | 27 | 2 | ··· | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 27 | ··· | 27 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 |
type | + | + | + | + | ||||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | S3 | C3×S3 | D9 | C3×S3 | C3×D9 | C3×D9 | 3- 1+2 | C2×3- 1+2 | S3×3- 1+2 | D9×3- 1+2 |
kernel | D9×3- 1+2 | C9×3- 1+2 | C9×D9 | C32×D9 | C92 | C32×C9 | C3×3- 1+2 | C3×C9 | 3- 1+2 | C33 | C9 | C32 | D9 | C9 | C3 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 1 | 6 | 3 | 2 | 18 | 6 | 2 | 2 | 2 | 6 |
Matrix representation of D9×3- 1+2 ►in GL5(𝔽19)
0 | 1 | 0 | 0 | 0 |
18 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
18 | 9 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 18 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 |
0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 11 | 0 |
7 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 7 |
G:=sub<GL(5,GF(19))| [0,18,0,0,0,1,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[18,0,0,0,0,9,1,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,11,0,0,7,0,0],[7,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,7] >;
D9×3- 1+2 in GAP, Magma, Sage, TeX
D_9\times 3_-^{1+2}
% in TeX
G:=Group("D9xES-(3,1)");
// GroupNames label
G:=SmallGroup(486,101);
// by ID
G=gap.SmallGroup(486,101);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,224,68,8104,208,11669]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^2=c^9=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations