Extensions 1→N→G→Q→1 with N=C9oHe3 and Q=S3

Direct product G=NxQ with N=C9oHe3 and Q=S3
dρLabelID
S3xC9oHe3546S3xC9oHe3486,226

Semidirect products G=N:Q with N=C9oHe3 and Q=S3
extensionφ:Q→Out NdρLabelID
C9oHe3:1S3 = C3wrC3.S3φ: S3/C1S3 ⊆ Out C9oHe3276+C9oHe3:1S3486,175
C9oHe3:2S3 = C3wrC3:S3φ: S3/C1S3 ⊆ Out C9oHe3276+C9oHe3:2S3486,189
C9oHe3:3S3 = C9oHe3:3S3φ: S3/C3C2 ⊆ Out C9oHe381C9oHe3:3S3486,245
C9oHe3:4S3 = C9oHe3:4S3φ: S3/C3C2 ⊆ Out C9oHe3546C9oHe3:4S3486,246

Non-split extensions G=N.Q with N=C9oHe3 and Q=S3
extensionφ:Q→Out NdρLabelID
C9oHe3.1S3 = He3.D9φ: S3/C1S3 ⊆ Out C9oHe3816+C9oHe3.1S3486,27
C9oHe3.2S3 = He3.2D9φ: S3/C1S3 ⊆ Out C9oHe3816+C9oHe3.2S3486,29
C9oHe3.3S3 = He3.3D9φ: S3/C1S3 ⊆ Out C9oHe3816+C9oHe3.3S3486,58
C9oHe3.4S3 = He3.4D9φ: S3/C1S3 ⊆ Out C9oHe3816+C9oHe3.4S3486,59
C9oHe3.5S3 = He3.5D9φ: S3/C3C2 ⊆ Out C9oHe3816+C9oHe3.5S3486,163

׿
x
:
Z
F
o
wr
Q
<