Copied to
clipboard

G = He3.2D9order 486 = 2·35

2nd non-split extension by He3 of D9 acting via D9/C3=S3

metabelian, supersoluble, monomial

Aliases: He3.2D9, C27⋊S33C3, (C3×C27)⋊3C6, C9.2(C9⋊C6), C9○He3.2S3, C9.6He32C2, C32.3(C3×D9), C9.5(C32⋊C6), C3.4(C32⋊D9), (C3×C9).37(C3×S3), SmallGroup(486,29)

Series: Derived Chief Lower central Upper central

C1C3×C27 — He3.2D9
C1C3C9C3×C9C3×C27C9.6He3 — He3.2D9
C3×C27 — He3.2D9
C1

Generators and relations for He3.2D9
 G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=b, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=ece=ab-1c, ede=b-1d8 >

81C2
3C3
9C3
27S3
81S3
81C6
3C32
6C9
9D9
9D9
9C3⋊S3
9D9
27C3×S3
23- 1+2
33- 1+2
3C27
33- 1+2
3C3×C9
6C27
3C9⋊S3
9C3×D9
9C32⋊C6
9C9⋊C6
9D27
9C9⋊C6
2C27⋊C3
3He3.4S3

Character table of He3.2D9

 class 123A3B3C3D6A6B9A9B9C9D9E9F9G27A27B27C27D27E27F27G27H27I27J27K27L27M27N27O
 size 18126998181222661818666666666181818181818
ρ1111111111111111111111111111111    trivial
ρ21-11111-1-11111111111111111111111    linear of order 2
ρ31-111ζ3ζ32ζ65ζ611111ζ32ζ3111111111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 6
ρ41111ζ32ζ3ζ32ζ311111ζ3ζ32111111111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ51-111ζ32ζ3ζ6ζ6511111ζ3ζ32111111111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 6
ρ61111ζ3ζ32ζ3ζ3211111ζ32ζ3111111111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ7202222002222222-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ820222200-1-1-1-1-1-1-1ζ989ζ9594ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ989ζ9792ζ9594ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ920222200-1-1-1-1-1-1-1ζ9792ζ989ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ9792ζ9594ζ989ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ1020222200-1-1-1-1-1-1-1ζ9594ζ9792ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9594ζ989ζ9792ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ112022-1--3-1+-30022222-1+-3-1--3-1-1-1-1-1-1-1-1-1ζ6ζ6ζ6ζ65ζ65ζ65    complex lifted from C3×S3
ρ122022-1+-3-1--30022222-1--3-1+-3-1-1-1-1-1-1-1-1-1ζ65ζ65ζ65ζ6ζ6ζ6    complex lifted from C3×S3
ρ132022-1+-3-1--300-1-1-1-1-1ζ6ζ65ζ9792ζ989ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ959ζ9897ζ9492ζ9795ζ9894ζ929    complex lifted from C3×D9
ρ142022-1+-3-1--300-1-1-1-1-1ζ6ζ65ζ9594ζ9792ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9897ζ9492ζ959ζ9894ζ929ζ9795    complex lifted from C3×D9
ρ152022-1+-3-1--300-1-1-1-1-1ζ6ζ65ζ989ζ9594ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9492ζ959ζ9897ζ929ζ9795ζ9894    complex lifted from C3×D9
ρ162022-1--3-1+-300-1-1-1-1-1ζ65ζ6ζ989ζ9594ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9795ζ9894ζ929ζ9897ζ9492ζ959    complex lifted from C3×D9
ρ172022-1--3-1+-300-1-1-1-1-1ζ65ζ6ζ9792ζ989ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ9894ζ929ζ9795ζ9492ζ959ζ9897    complex lifted from C3×D9
ρ182022-1--3-1+-300-1-1-1-1-1ζ65ζ6ζ9594ζ9792ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ929ζ9795ζ9894ζ959ζ9897ζ9492    complex lifted from C3×D9
ρ19606-30000666-3-300000000000000000    orthogonal lifted from C32⋊C6
ρ20606-30000-3-3-3-3600000000000000000    orthogonal lifted from C9⋊C6
ρ21606-30000-3-3-36-300000000000000000    orthogonal lifted from C9⋊C6
ρ2260-3000002721+3ζ2762715+3ζ27122724+3ζ2730000ζ272527202716+2ζ272ζ27262710278+2ζ272725+2ζ27202711277ζ27252720+2ζ27162711ζ27232713275+2ζ27427142713275274ζ272327222713+2ζ27527172710278272719271727827000000    orthogonal faithful
ρ2360-3000002715+3ζ27122724+3ζ2732721+3ζ2760000271427132752742725+2ζ27202711277ζ272327222713+2ζ275ζ27232713275+2ζ274ζ27262710278+2ζ2727172710278272719271727827ζ27252720+2ζ27162711ζ272527202716+2ζ272000000    orthogonal faithful
ρ2460-3000002724+3ζ2732721+3ζ2762715+3ζ271200002719271727827ζ27232713275+2ζ274ζ27262710278+2ζ272717271027827ζ27252720+2ζ27162711ζ272527202716+2ζ2722725+2ζ2720271127727142713275274ζ272327222713+2ζ275000000    orthogonal faithful
ρ2560-3000002715+3ζ27122724+3ζ2732721+3ζ2760000ζ27232713275+2ζ274ζ272527202716+2ζ27227142713275274ζ272327222713+2ζ2752719271727827ζ27262710278+2ζ2727172710278272725+2ζ27202711277ζ27252720+2ζ27162711000000    orthogonal faithful
ρ2660-3000002715+3ζ27122724+3ζ2732721+3ζ2760000ζ272327222713+2ζ275ζ27252720+2ζ27162711ζ27232713275+2ζ2742714271327527427172710278272719271727827ζ27262710278+2ζ27ζ272527202716+2ζ2722725+2ζ27202711277000000    orthogonal faithful
ρ2760-3000002724+3ζ2732721+3ζ2762715+3ζ271200002717271027827ζ272327222713+2ζ2752719271727827ζ27262710278+2ζ272725+2ζ27202711277ζ27252720+2ζ27162711ζ272527202716+2ζ272ζ27232713275+2ζ27427142713275274000000    orthogonal faithful
ρ2860-3000002721+3ζ2762715+3ζ27122724+3ζ27300002725+2ζ272027112772717271027827ζ27252720+2ζ27162711ζ272527202716+2ζ27227142713275274ζ272327222713+2ζ275ζ27232713275+2ζ2742719271727827ζ27262710278+2ζ27000000    orthogonal faithful
ρ2960-3000002721+3ζ2762715+3ζ27122724+3ζ2730000ζ27252720+2ζ271627112719271727827ζ272527202716+2ζ2722725+2ζ27202711277ζ272327222713+2ζ275ζ27232713275+2ζ27427142713275274ζ27262710278+2ζ272717271027827000000    orthogonal faithful
ρ3060-3000002724+3ζ2732721+3ζ2762715+3ζ27120000ζ27262710278+2ζ272714271327527427172710278272719271727827ζ272527202716+2ζ2722725+2ζ27202711277ζ27252720+2ζ27162711ζ272327222713+2ζ275ζ27232713275+2ζ274000000    orthogonal faithful

Smallest permutation representation of He3.2D9
On 81 points
Generators in S81
(1 61 52)(2 62 53)(3 63 54)(4 64 28)(5 65 29)(6 66 30)(7 67 31)(8 68 32)(9 69 33)(10 70 34)(11 71 35)(12 72 36)(13 73 37)(14 74 38)(15 75 39)(16 76 40)(17 77 41)(18 78 42)(19 79 43)(20 80 44)(21 81 45)(22 55 46)(23 56 47)(24 57 48)(25 58 49)(26 59 50)(27 60 51)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(2 62 35)(3 54 81)(5 65 38)(6 30 57)(8 68 41)(9 33 60)(11 71 44)(12 36 63)(14 74 47)(15 39 66)(17 77 50)(18 42 69)(20 80 53)(21 45 72)(23 56 29)(24 48 75)(26 59 32)(27 51 78)(28 46 37)(31 49 40)(34 52 43)(55 64 73)(58 67 76)(61 70 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 75)(29 74)(30 73)(31 72)(32 71)(33 70)(34 69)(35 68)(36 67)(37 66)(38 65)(39 64)(40 63)(41 62)(42 61)(43 60)(44 59)(45 58)(46 57)(47 56)(48 55)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)

G:=sub<Sym(81)| (1,61,52)(2,62,53)(3,63,54)(4,64,28)(5,65,29)(6,66,30)(7,67,31)(8,68,32)(9,69,33)(10,70,34)(11,71,35)(12,72,36)(13,73,37)(14,74,38)(15,75,39)(16,76,40)(17,77,41)(18,78,42)(19,79,43)(20,80,44)(21,81,45)(22,55,46)(23,56,47)(24,57,48)(25,58,49)(26,59,50)(27,60,51), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,62,35)(3,54,81)(5,65,38)(6,30,57)(8,68,41)(9,33,60)(11,71,44)(12,36,63)(14,74,47)(15,39,66)(17,77,50)(18,42,69)(20,80,53)(21,45,72)(23,56,29)(24,48,75)(26,59,32)(27,51,78)(28,46,37)(31,49,40)(34,52,43)(55,64,73)(58,67,76)(61,70,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)>;

G:=Group( (1,61,52)(2,62,53)(3,63,54)(4,64,28)(5,65,29)(6,66,30)(7,67,31)(8,68,32)(9,69,33)(10,70,34)(11,71,35)(12,72,36)(13,73,37)(14,74,38)(15,75,39)(16,76,40)(17,77,41)(18,78,42)(19,79,43)(20,80,44)(21,81,45)(22,55,46)(23,56,47)(24,57,48)(25,58,49)(26,59,50)(27,60,51), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,62,35)(3,54,81)(5,65,38)(6,30,57)(8,68,41)(9,33,60)(11,71,44)(12,36,63)(14,74,47)(15,39,66)(17,77,50)(18,42,69)(20,80,53)(21,45,72)(23,56,29)(24,48,75)(26,59,32)(27,51,78)(28,46,37)(31,49,40)(34,52,43)(55,64,73)(58,67,76)(61,70,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76) );

G=PermutationGroup([[(1,61,52),(2,62,53),(3,63,54),(4,64,28),(5,65,29),(6,66,30),(7,67,31),(8,68,32),(9,69,33),(10,70,34),(11,71,35),(12,72,36),(13,73,37),(14,74,38),(15,75,39),(16,76,40),(17,77,41),(18,78,42),(19,79,43),(20,80,44),(21,81,45),(22,55,46),(23,56,47),(24,57,48),(25,58,49),(26,59,50),(27,60,51)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(2,62,35),(3,54,81),(5,65,38),(6,30,57),(8,68,41),(9,33,60),(11,71,44),(12,36,63),(14,74,47),(15,39,66),(17,77,50),(18,42,69),(20,80,53),(21,45,72),(23,56,29),(24,48,75),(26,59,32),(27,51,78),(28,46,37),(31,49,40),(34,52,43),(55,64,73),(58,67,76),(61,70,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,75),(29,74),(30,73),(31,72),(32,71),(33,70),(34,69),(35,68),(36,67),(37,66),(38,65),(39,64),(40,63),(41,62),(42,61),(43,60),(44,59),(45,58),(46,57),(47,56),(48,55),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76)]])

Matrix representation of He3.2D9 in GL6(𝔽109)

001000
000100
000010
000001
100000
010000
,
010000
1081080000
000100
0010810800
000001
0000108108
,
100000
010000
0010810800
001000
000001
0000108108
,
461275634612
973446129734
461246127563
973497344612
756346124612
461297349734
,
415211684152
116857981168
116841524152
579811681168
415241521168
116811685798

G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[46,97,46,97,75,46,12,34,12,34,63,12,75,46,46,97,46,97,63,12,12,34,12,34,46,97,75,46,46,97,12,34,63,12,12,34],[41,11,11,57,41,11,52,68,68,98,52,68,11,57,41,11,41,11,68,98,52,68,52,68,41,11,41,11,11,57,52,68,52,68,68,98] >;

He3.2D9 in GAP, Magma, Sage, TeX

{\rm He}_3._2D_9
% in TeX

G:=Group("He3.2D9");
// GroupNames label

G:=SmallGroup(486,29);
// by ID

G=gap.SmallGroup(486,29);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,824,867,2169,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=e*c*e=a*b^-1*c,e*d*e=b^-1*d^8>;
// generators/relations

Export

Subgroup lattice of He3.2D9 in TeX
Character table of He3.2D9 in TeX

׿
×
𝔽