metabelian, supersoluble, monomial
Aliases: He3.2D9, C27⋊S3⋊3C3, (C3×C27)⋊3C6, C9.2(C9⋊C6), C9○He3.2S3, C9.6He3⋊2C2, C32.3(C3×D9), C9.5(C32⋊C6), C3.4(C32⋊D9), (C3×C9).37(C3×S3), SmallGroup(486,29)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C27 — He3.2D9 |
Generators and relations for He3.2D9
G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=b, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=ece=ab-1c, ede=b-1d8 >
Character table of He3.2D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | 27J | 27K | 27L | 27M | 27N | 27O | |
size | 1 | 81 | 2 | 6 | 9 | 9 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ9 | ζ98+ζ97 | ζ94+ζ92 | ζ97+ζ95 | ζ98+ζ94 | ζ92+ζ9 | complex lifted from C3×D9 |
ρ14 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ97 | ζ94+ζ92 | ζ95+ζ9 | ζ98+ζ94 | ζ92+ζ9 | ζ97+ζ95 | complex lifted from C3×D9 |
ρ15 | 2 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ94+ζ92 | ζ95+ζ9 | ζ98+ζ97 | ζ92+ζ9 | ζ97+ζ95 | ζ98+ζ94 | complex lifted from C3×D9 |
ρ16 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ95 | ζ98+ζ94 | ζ92+ζ9 | ζ98+ζ97 | ζ94+ζ92 | ζ95+ζ9 | complex lifted from C3×D9 |
ρ17 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ94 | ζ92+ζ9 | ζ97+ζ95 | ζ94+ζ92 | ζ95+ζ9 | ζ98+ζ97 | complex lifted from C3×D9 |
ρ18 | 2 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ92+ζ9 | ζ97+ζ95 | ζ98+ζ94 | ζ95+ζ9 | ζ98+ζ97 | ζ94+ζ92 | complex lifted from C3×D9 |
ρ19 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 6 | 6 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ20 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C9⋊C6 |
ρ21 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C9⋊C6 |
ρ22 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2725+ζ2720-ζ2716+2ζ272 | ζ2726+ζ2710-ζ278+2ζ27 | -ζ2725+2ζ2720+ζ2711+ζ277 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | 2ζ2717+ζ2710+ζ278-ζ27 | 2ζ2719-ζ2717+ζ278+ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | 2ζ2714+ζ2713+ζ275-ζ274 | -ζ2725+2ζ2720+ζ2711+ζ277 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2725+ζ2720-ζ2716+2ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2723+ζ2713-ζ275+2ζ274 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2725+ζ2720-ζ2716+2ζ272 | -ζ2725+2ζ2720+ζ2711+ζ277 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | ζ2723+ζ2713-ζ275+2ζ274 | ζ2725+ζ2720-ζ2716+2ζ272 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | -ζ2725+2ζ2720+ζ2711+ζ277 | ζ2725-ζ2720+2ζ2716+ζ2711 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | 2ζ2717+ζ2710+ζ278-ζ27 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2726+ζ2710-ζ278+2ζ27 | ζ2725+ζ2720-ζ2716+2ζ272 | -ζ2725+2ζ2720+ζ2711+ζ277 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2723+ζ2722-ζ2713+2ζ275 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2726+ζ2710-ζ278+2ζ27 | -ζ2725+2ζ2720+ζ2711+ζ277 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2725+ζ2720-ζ2716+2ζ272 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | -ζ2725+2ζ2720+ζ2711+ζ277 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2725+ζ2720-ζ2716+2ζ272 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2726+ζ2710-ζ278+2ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2725-ζ2720+2ζ2716+ζ2711 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2725+ζ2720-ζ2716+2ζ272 | -ζ2725+2ζ2720+ζ2711+ζ277 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2714+ζ2713+ζ275-ζ274 | 2ζ2717+ζ2710+ζ278-ζ27 | 2ζ2719-ζ2717+ζ278+ζ27 | ζ2725+ζ2720-ζ2716+2ζ272 | -ζ2725+2ζ2720+ζ2711+ζ277 | ζ2725-ζ2720+2ζ2716+ζ2711 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 61 52)(2 62 53)(3 63 54)(4 64 28)(5 65 29)(6 66 30)(7 67 31)(8 68 32)(9 69 33)(10 70 34)(11 71 35)(12 72 36)(13 73 37)(14 74 38)(15 75 39)(16 76 40)(17 77 41)(18 78 42)(19 79 43)(20 80 44)(21 81 45)(22 55 46)(23 56 47)(24 57 48)(25 58 49)(26 59 50)(27 60 51)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(2 62 35)(3 54 81)(5 65 38)(6 30 57)(8 68 41)(9 33 60)(11 71 44)(12 36 63)(14 74 47)(15 39 66)(17 77 50)(18 42 69)(20 80 53)(21 45 72)(23 56 29)(24 48 75)(26 59 32)(27 51 78)(28 46 37)(31 49 40)(34 52 43)(55 64 73)(58 67 76)(61 70 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 75)(29 74)(30 73)(31 72)(32 71)(33 70)(34 69)(35 68)(36 67)(37 66)(38 65)(39 64)(40 63)(41 62)(42 61)(43 60)(44 59)(45 58)(46 57)(47 56)(48 55)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)
G:=sub<Sym(81)| (1,61,52)(2,62,53)(3,63,54)(4,64,28)(5,65,29)(6,66,30)(7,67,31)(8,68,32)(9,69,33)(10,70,34)(11,71,35)(12,72,36)(13,73,37)(14,74,38)(15,75,39)(16,76,40)(17,77,41)(18,78,42)(19,79,43)(20,80,44)(21,81,45)(22,55,46)(23,56,47)(24,57,48)(25,58,49)(26,59,50)(27,60,51), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,62,35)(3,54,81)(5,65,38)(6,30,57)(8,68,41)(9,33,60)(11,71,44)(12,36,63)(14,74,47)(15,39,66)(17,77,50)(18,42,69)(20,80,53)(21,45,72)(23,56,29)(24,48,75)(26,59,32)(27,51,78)(28,46,37)(31,49,40)(34,52,43)(55,64,73)(58,67,76)(61,70,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)>;
G:=Group( (1,61,52)(2,62,53)(3,63,54)(4,64,28)(5,65,29)(6,66,30)(7,67,31)(8,68,32)(9,69,33)(10,70,34)(11,71,35)(12,72,36)(13,73,37)(14,74,38)(15,75,39)(16,76,40)(17,77,41)(18,78,42)(19,79,43)(20,80,44)(21,81,45)(22,55,46)(23,56,47)(24,57,48)(25,58,49)(26,59,50)(27,60,51), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,62,35)(3,54,81)(5,65,38)(6,30,57)(8,68,41)(9,33,60)(11,71,44)(12,36,63)(14,74,47)(15,39,66)(17,77,50)(18,42,69)(20,80,53)(21,45,72)(23,56,29)(24,48,75)(26,59,32)(27,51,78)(28,46,37)(31,49,40)(34,52,43)(55,64,73)(58,67,76)(61,70,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76) );
G=PermutationGroup([[(1,61,52),(2,62,53),(3,63,54),(4,64,28),(5,65,29),(6,66,30),(7,67,31),(8,68,32),(9,69,33),(10,70,34),(11,71,35),(12,72,36),(13,73,37),(14,74,38),(15,75,39),(16,76,40),(17,77,41),(18,78,42),(19,79,43),(20,80,44),(21,81,45),(22,55,46),(23,56,47),(24,57,48),(25,58,49),(26,59,50),(27,60,51)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(2,62,35),(3,54,81),(5,65,38),(6,30,57),(8,68,41),(9,33,60),(11,71,44),(12,36,63),(14,74,47),(15,39,66),(17,77,50),(18,42,69),(20,80,53),(21,45,72),(23,56,29),(24,48,75),(26,59,32),(27,51,78),(28,46,37),(31,49,40),(34,52,43),(55,64,73),(58,67,76),(61,70,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,75),(29,74),(30,73),(31,72),(32,71),(33,70),(34,69),(35,68),(36,67),(37,66),(38,65),(39,64),(40,63),(41,62),(42,61),(43,60),(44,59),(45,58),(46,57),(47,56),(48,55),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76)]])
Matrix representation of He3.2D9 ►in GL6(𝔽109)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
108 | 108 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 108 | 108 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 108 | 108 |
46 | 12 | 75 | 63 | 46 | 12 |
97 | 34 | 46 | 12 | 97 | 34 |
46 | 12 | 46 | 12 | 75 | 63 |
97 | 34 | 97 | 34 | 46 | 12 |
75 | 63 | 46 | 12 | 46 | 12 |
46 | 12 | 97 | 34 | 97 | 34 |
41 | 52 | 11 | 68 | 41 | 52 |
11 | 68 | 57 | 98 | 11 | 68 |
11 | 68 | 41 | 52 | 41 | 52 |
57 | 98 | 11 | 68 | 11 | 68 |
41 | 52 | 41 | 52 | 11 | 68 |
11 | 68 | 11 | 68 | 57 | 98 |
G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[46,97,46,97,75,46,12,34,12,34,63,12,75,46,46,97,46,97,63,12,12,34,12,34,46,97,75,46,46,97,12,34,63,12,12,34],[41,11,11,57,41,11,52,68,68,98,52,68,11,57,41,11,41,11,68,98,52,68,52,68,41,11,41,11,11,57,52,68,52,68,68,98] >;
He3.2D9 in GAP, Magma, Sage, TeX
{\rm He}_3._2D_9
% in TeX
G:=Group("He3.2D9");
// GroupNames label
G:=SmallGroup(486,29);
// by ID
G=gap.SmallGroup(486,29);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,824,867,2169,8104,208,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=e*c*e=a*b^-1*c,e*d*e=b^-1*d^8>;
// generators/relations
Export
Subgroup lattice of He3.2D9 in TeX
Character table of He3.2D9 in TeX