Extensions 1→N→G→Q→1 with N=C3 and Q=He3⋊S3

Direct product G=N×Q with N=C3 and Q=He3⋊S3
dρLabelID
C3×He3⋊S3546C3xHe3:S3486,171

Semidirect products G=N:Q with N=C3 and Q=He3⋊S3
extensionφ:Q→Aut NdρLabelID
C3⋊(He3⋊S3) = C3⋊(He3⋊S3)φ: He3⋊S3/He3⋊C3C2 ⊆ Aut C381C3:(He3:S3)486,187

Non-split extensions G=N.Q with N=C3 and Q=He3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(He3⋊S3) = (C3×He3)⋊S3φ: He3⋊S3/He3⋊C3C2 ⊆ Aut C381C3.1(He3:S3)486,43
C3.2(He3⋊S3) = C32⋊C96S3φ: He3⋊S3/He3⋊C3C2 ⊆ Aut C381C3.2(He3:S3)486,46
C3.3(He3⋊S3) = C3.(He3⋊S3)φ: He3⋊S3/He3⋊C3C2 ⊆ Aut C381C3.3(He3:S3)486,48
C3.4(He3⋊S3) = (C3×C9)⋊6D9φ: He3⋊S3/He3⋊C3C2 ⊆ Aut C381C3.4(He3:S3)486,54
C3.5(He3⋊S3) = He32D9φ: He3⋊S3/He3⋊C3C2 ⊆ Aut C381C3.5(He3:S3)486,56
C3.6(He3⋊S3) = C922S3central stem extension (φ=1)273C3.6(He3:S3)486,61

׿
×
𝔽