Extensions 1→N→G→Q→1 with N=C9 and Q=C9⋊C6

Direct product G=N×Q with N=C9 and Q=C9⋊C6
dρLabelID
C9×C9⋊C6546C9xC9:C6486,100

Semidirect products G=N:Q with N=C9 and Q=C9⋊C6
extensionφ:Q→Aut NdρLabelID
C91(C9⋊C6) = C9210C6φ: C9⋊C6/C9C6 ⊆ Aut C981C9:1(C9:C6)486,154
C92(C9⋊C6) = C9212C6φ: C9⋊C6/C9C6 ⊆ Aut C981C9:2(C9:C6)486,159
C93(C9⋊C6) = C927C6φ: C9⋊C6/D9C3 ⊆ Aut C9546C9:3(C9:C6)486,109
C94(C9⋊C6) = C928C6φ: C9⋊C6/D9C3 ⊆ Aut C9186C9:4(C9:C6)486,110
C95(C9⋊C6) = C929C6φ: C9⋊C6/3- 1+2C2 ⊆ Aut C981C9:5(C9:C6)486,144

Non-split extensions G=N.Q with N=C9 and Q=C9⋊C6
extensionφ:Q→Aut NdρLabelID
C9.1(C9⋊C6) = He3.D9φ: C9⋊C6/C9C6 ⊆ Aut C9816+C9.1(C9:C6)486,27
C9.2(C9⋊C6) = He3.2D9φ: C9⋊C6/C9C6 ⊆ Aut C9816+C9.2(C9:C6)486,29
C9.3(C9⋊C6) = C9211C6φ: C9⋊C6/C9C6 ⊆ Aut C981C9.3(C9:C6)486,158
C9.4(C9⋊C6) = C32⋊D27φ: C9⋊C6/3- 1+2C2 ⊆ Aut C981C9.4(C9:C6)486,17
C9.5(C9⋊C6) = C9⋊C54central extension (φ=1)546C9.5(C9:C6)486,30

׿
×
𝔽