extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D6 = C12.46D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 24 | 4+ | (C2xC4).1D6 | 96,30 |
(C2×C4).2D6 = C12.47D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4- | (C2xC4).2D6 | 96,31 |
(C2×C4).3D6 = C12.D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).3D6 | 96,40 |
(C2×C4).4D6 = C12.10D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).4D6 | 96,43 |
(C2×C4).5D6 = Dic3.D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).5D6 | 96,85 |
(C2×C4).6D6 = C23.9D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).6D6 | 96,90 |
(C2×C4).7D6 = Dic3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).7D6 | 96,91 |
(C2×C4).8D6 = C23.11D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).8D6 | 96,92 |
(C2×C4).9D6 = C23.21D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).9D6 | 96,93 |
(C2×C4).10D6 = Dic3.Q8 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).10D6 | 96,96 |
(C2×C4).11D6 = D6.D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).11D6 | 96,101 |
(C2×C4).12D6 = C12⋊D4 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).12D6 | 96,102 |
(C2×C4).13D6 = D6⋊Q8 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).13D6 | 96,103 |
(C2×C4).14D6 = C4.D12 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).14D6 | 96,104 |
(C2×C4).15D6 = C8⋊D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 24 | 4+ | (C2xC4).15D6 | 96,115 |
(C2×C4).16D6 = C8.D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4- | (C2xC4).16D6 | 96,116 |
(C2×C4).17D6 = D12⋊6C22 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).17D6 | 96,139 |
(C2×C4).18D6 = C23.23D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).18D6 | 96,142 |
(C2×C4).19D6 = C23.14D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).19D6 | 96,146 |
(C2×C4).20D6 = Q8.11D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).20D6 | 96,149 |
(C2×C4).21D6 = D6⋊3Q8 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).21D6 | 96,153 |
(C2×C4).22D6 = D4⋊D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 24 | 4+ | (C2xC4).22D6 | 96,156 |
(C2×C4).23D6 = Q8.14D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4- | (C2xC4).23D6 | 96,158 |
(C2×C4).24D6 = Q8.15D6 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).24D6 | 96,214 |
(C2×C4).25D6 = Q8○D12 | φ: D6/C3 → C22 ⊆ Aut C2×C4 | 48 | 4- | (C2xC4).25D6 | 96,217 |
(C2×C4).26D6 = C23.16D6 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).26D6 | 96,84 |
(C2×C4).27D6 = C23.8D6 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).27D6 | 96,86 |
(C2×C4).28D6 = Dic3⋊4D4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).28D6 | 96,88 |
(C2×C4).29D6 = Dic6⋊C4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).29D6 | 96,94 |
(C2×C4).30D6 = S3×C4⋊C4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).30D6 | 96,98 |
(C2×C4).31D6 = Dic3⋊5D4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).31D6 | 96,100 |
(C2×C4).32D6 = C4⋊C4⋊S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).32D6 | 96,105 |
(C2×C4).33D6 = C6.Q16 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).33D6 | 96,14 |
(C2×C4).34D6 = C12.Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).34D6 | 96,15 |
(C2×C4).35D6 = C6.D8 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).35D6 | 96,16 |
(C2×C4).36D6 = C6.SD16 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).36D6 | 96,17 |
(C2×C4).37D6 = C12.53D4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).37D6 | 96,29 |
(C2×C4).38D6 = D12⋊C4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).38D6 | 96,32 |
(C2×C4).39D6 = D4⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).39D6 | 96,39 |
(C2×C4).40D6 = Q8⋊2Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).40D6 | 96,42 |
(C2×C4).41D6 = Q8⋊3Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).41D6 | 96,44 |
(C2×C4).42D6 = C12⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).42D6 | 96,95 |
(C2×C4).43D6 = C4.Dic6 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).43D6 | 96,97 |
(C2×C4).44D6 = C4⋊C4⋊7S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).44D6 | 96,99 |
(C2×C4).45D6 = S3×M4(2) | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).45D6 | 96,113 |
(C2×C4).46D6 = D12.C4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).46D6 | 96,114 |
(C2×C4).47D6 = C2×D4⋊S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).47D6 | 96,138 |
(C2×C4).48D6 = C2×D4.S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).48D6 | 96,140 |
(C2×C4).49D6 = D4×Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).49D6 | 96,141 |
(C2×C4).50D6 = C23.12D6 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).50D6 | 96,143 |
(C2×C4).51D6 = D6⋊3D4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).51D6 | 96,145 |
(C2×C4).52D6 = C12⋊3D4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).52D6 | 96,147 |
(C2×C4).53D6 = C2×Q8⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).53D6 | 96,148 |
(C2×C4).54D6 = C2×C3⋊Q16 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).54D6 | 96,150 |
(C2×C4).55D6 = Dic3⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).55D6 | 96,151 |
(C2×C4).56D6 = Q8×Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).56D6 | 96,152 |
(C2×C4).57D6 = C12.23D4 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).57D6 | 96,154 |
(C2×C4).58D6 = D4.Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).58D6 | 96,155 |
(C2×C4).59D6 = Q8.13D6 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).59D6 | 96,157 |
(C2×C4).60D6 = C2×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).60D6 | 96,210 |
(C2×C4).61D6 = C2×S3×Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).61D6 | 96,212 |
(C2×C4).62D6 = C2×Q8⋊3S3 | φ: D6/S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).62D6 | 96,213 |
(C2×C4).63D6 = C42⋊3S3 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).63D6 | 96,83 |
(C2×C4).64D6 = C2×Dic3⋊C4 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).64D6 | 96,130 |
(C2×C4).65D6 = C23.28D6 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).65D6 | 96,136 |
(C2×C4).66D6 = C42⋊4S3 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 24 | 2 | (C2xC4).66D6 | 96,12 |
(C2×C4).67D6 = C2.Dic12 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).67D6 | 96,23 |
(C2×C4).68D6 = C8⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).68D6 | 96,24 |
(C2×C4).69D6 = C24⋊1C4 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).69D6 | 96,25 |
(C2×C4).70D6 = C24.C4 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).70D6 | 96,26 |
(C2×C4).71D6 = C2.D24 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).71D6 | 96,28 |
(C2×C4).72D6 = C4×Dic6 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).72D6 | 96,75 |
(C2×C4).73D6 = C12⋊2Q8 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).73D6 | 96,76 |
(C2×C4).74D6 = C12.6Q8 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).74D6 | 96,77 |
(C2×C4).75D6 = C4×D12 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).75D6 | 96,80 |
(C2×C4).76D6 = C4⋊D12 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).76D6 | 96,81 |
(C2×C4).77D6 = C42⋊7S3 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).77D6 | 96,82 |
(C2×C4).78D6 = C8○D12 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).78D6 | 96,108 |
(C2×C4).79D6 = C2×C24⋊C2 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).79D6 | 96,109 |
(C2×C4).80D6 = C2×D24 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).80D6 | 96,110 |
(C2×C4).81D6 = C4○D24 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).81D6 | 96,111 |
(C2×C4).82D6 = C2×Dic12 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).82D6 | 96,112 |
(C2×C4).83D6 = C12.48D4 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).83D6 | 96,131 |
(C2×C4).84D6 = C2×C4⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).84D6 | 96,132 |
(C2×C4).85D6 = C12⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).85D6 | 96,137 |
(C2×C4).86D6 = C22×Dic6 | φ: D6/C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).86D6 | 96,205 |
(C2×C4).87D6 = C4×C3⋊C8 | central extension (φ=1) | 96 | | (C2xC4).87D6 | 96,9 |
(C2×C4).88D6 = C42.S3 | central extension (φ=1) | 96 | | (C2xC4).88D6 | 96,10 |
(C2×C4).89D6 = C12⋊C8 | central extension (φ=1) | 96 | | (C2xC4).89D6 | 96,11 |
(C2×C4).90D6 = C8×Dic3 | central extension (φ=1) | 96 | | (C2xC4).90D6 | 96,20 |
(C2×C4).91D6 = Dic3⋊C8 | central extension (φ=1) | 96 | | (C2xC4).91D6 | 96,21 |
(C2×C4).92D6 = C24⋊C4 | central extension (φ=1) | 96 | | (C2xC4).92D6 | 96,22 |
(C2×C4).93D6 = D6⋊C8 | central extension (φ=1) | 48 | | (C2xC4).93D6 | 96,27 |
(C2×C4).94D6 = C12.55D4 | central extension (φ=1) | 48 | | (C2xC4).94D6 | 96,37 |
(C2×C4).95D6 = S3×C42 | central extension (φ=1) | 48 | | (C2xC4).95D6 | 96,78 |
(C2×C4).96D6 = C42⋊2S3 | central extension (φ=1) | 48 | | (C2xC4).96D6 | 96,79 |
(C2×C4).97D6 = S3×C2×C8 | central extension (φ=1) | 48 | | (C2xC4).97D6 | 96,106 |
(C2×C4).98D6 = C2×C8⋊S3 | central extension (φ=1) | 48 | | (C2xC4).98D6 | 96,107 |
(C2×C4).99D6 = C22×C3⋊C8 | central extension (φ=1) | 96 | | (C2xC4).99D6 | 96,127 |
(C2×C4).100D6 = C2×C4.Dic3 | central extension (φ=1) | 48 | | (C2xC4).100D6 | 96,128 |
(C2×C4).101D6 = C2×C4×Dic3 | central extension (φ=1) | 96 | | (C2xC4).101D6 | 96,129 |
(C2×C4).102D6 = C23.26D6 | central extension (φ=1) | 48 | | (C2xC4).102D6 | 96,133 |
(C2×C4).103D6 = C4×C3⋊D4 | central extension (φ=1) | 48 | | (C2xC4).103D6 | 96,135 |