Copied to
clipboard

G = S3×C13order 78 = 2·3·13

Direct product of C13 and S3

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: S3×C13, C3⋊C26, C393C2, SmallGroup(78,3)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C13
C1C3C39 — S3×C13
C3 — S3×C13
C1C13

Generators and relations for S3×C13
 G = < a,b,c | a13=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C26

Smallest permutation representation of S3×C13
On 39 points
Generators in S39
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(1 39 15)(2 27 16)(3 28 17)(4 29 18)(5 30 19)(6 31 20)(7 32 21)(8 33 22)(9 34 23)(10 35 24)(11 36 25)(12 37 26)(13 38 14)
(14 38)(15 39)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)(25 36)(26 37)

G:=sub<Sym(39)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,39,15)(2,27,16)(3,28,17)(4,29,18)(5,30,19)(6,31,20)(7,32,21)(8,33,22)(9,34,23)(10,35,24)(11,36,25)(12,37,26)(13,38,14), (14,38)(15,39)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,37)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,39,15)(2,27,16)(3,28,17)(4,29,18)(5,30,19)(6,31,20)(7,32,21)(8,33,22)(9,34,23)(10,35,24)(11,36,25)(12,37,26)(13,38,14), (14,38)(15,39)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,37) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(1,39,15),(2,27,16),(3,28,17),(4,29,18),(5,30,19),(6,31,20),(7,32,21),(8,33,22),(9,34,23),(10,35,24),(11,36,25),(12,37,26),(13,38,14)], [(14,38),(15,39),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35),(25,36),(26,37)]])

39 conjugacy classes

class 1  2  3 13A···13L26A···26L39A···39L
order12313···1326···2639···39
size1321···13···32···2

39 irreducible representations

dim111122
type+++
imageC1C2C13C26S3S3×C13
kernelS3×C13C39S3C3C13C1
# reps111212112

Matrix representation of S3×C13 in GL2(𝔽79) generated by

80
08
,
078
178
,
01
10
G:=sub<GL(2,GF(79))| [8,0,0,8],[0,1,78,78],[0,1,1,0] >;

S3×C13 in GAP, Magma, Sage, TeX

S_3\times C_{13}
% in TeX

G:=Group("S3xC13");
// GroupNames label

G:=SmallGroup(78,3);
// by ID

G=gap.SmallGroup(78,3);
# by ID

G:=PCGroup([3,-2,-13,-3,470]);
// Polycyclic

G:=Group<a,b,c|a^13=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C13 in TeX

׿
×
𝔽