Extensions 1→N→G→Q→1 with N=C6 and Q=SD16

Direct product G=N×Q with N=C6 and Q=SD16
dρLabelID
C6×SD1648C6xSD1696,180

Semidirect products G=N:Q with N=C6 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C61SD16 = C2×C24⋊C2φ: SD16/C8C2 ⊆ Aut C648C6:1SD1696,109
C62SD16 = C2×D4.S3φ: SD16/D4C2 ⊆ Aut C648C6:2SD1696,140
C63SD16 = C2×Q82S3φ: SD16/Q8C2 ⊆ Aut C648C6:3SD1696,148

Non-split extensions G=N.Q with N=C6 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C6.1SD16 = C2.Dic12φ: SD16/C8C2 ⊆ Aut C696C6.1SD1696,23
C6.2SD16 = C8⋊Dic3φ: SD16/C8C2 ⊆ Aut C696C6.2SD1696,24
C6.3SD16 = C2.D24φ: SD16/C8C2 ⊆ Aut C648C6.3SD1696,28
C6.4SD16 = C12.Q8φ: SD16/D4C2 ⊆ Aut C696C6.4SD1696,15
C6.5SD16 = C6.SD16φ: SD16/D4C2 ⊆ Aut C696C6.5SD1696,17
C6.6SD16 = D4⋊Dic3φ: SD16/D4C2 ⊆ Aut C648C6.6SD1696,39
C6.7SD16 = C6.D8φ: SD16/Q8C2 ⊆ Aut C648C6.7SD1696,16
C6.8SD16 = Q82Dic3φ: SD16/Q8C2 ⊆ Aut C696C6.8SD1696,42
C6.9SD16 = C3×D4⋊C4central extension (φ=1)48C6.9SD1696,52
C6.10SD16 = C3×Q8⋊C4central extension (φ=1)96C6.10SD1696,53
C6.11SD16 = C3×C4.Q8central extension (φ=1)96C6.11SD1696,56

׿
×
𝔽