Copied to
clipboard

G = C6.D8order 96 = 25·3

2nd non-split extension by C6 of D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.7D8, D123C4, C4.9D12, C12.1D4, C6.7SD16, C4⋊C41S3, C4.1(C4×S3), C12.3(C2×C4), (C2×C4).35D6, (C2×C6).30D4, C31(D4⋊C4), C2.5(D6⋊C4), C2.2(D4⋊S3), (C2×D12).5C2, C6.3(C22⋊C4), (C2×C12).10C22, C2.2(Q82S3), C22.14(C3⋊D4), (C2×C3⋊C8)⋊1C2, (C3×C4⋊C4)⋊1C2, SmallGroup(96,16)

Series: Derived Chief Lower central Upper central

C1C12 — C6.D8
C1C3C6C2×C6C2×C12C2×D12 — C6.D8
C3C6C12 — C6.D8
C1C22C2×C4C4⋊C4

Generators and relations for C6.D8
 G = < a,b,c | a6=b8=c2=1, bab-1=cac=a-1, cbc=a3b-1 >

12C2
12C2
4C4
6C22
6C22
12C22
12C22
4S3
4S3
2C2×C4
3D4
3D4
6C8
6D4
6C23
2D6
2D6
4D6
4D6
4C12
3C2×C8
3C2×D4
2C3⋊C8
2C2×C12
2C22×S3
2D12
3D4⋊C4

Character table of C6.D8

 class 12A2B2C2D2E34A4B4C4D6A6B6C8A8B8C8D12A12B12C12D12E12F
 size 11111212222442226666444444
ρ1111111111111111111111111    trivial
ρ21111-1-1111-1-11111111-1-11-11-1    linear of order 2
ρ31111-1-111111111-1-1-1-1111111    linear of order 2
ρ4111111111-1-1111-1-1-1-1-1-11-11-1    linear of order 2
ρ511-1-11-11-11-ii1-1-1-iii-ii-i1i-1-i    linear of order 4
ρ611-1-1-111-11-ii1-1-1i-i-iii-i1i-1-i    linear of order 4
ρ711-1-1-111-11i-i1-1-1-iii-i-ii1-i-1i    linear of order 4
ρ811-1-11-11-11i-i1-1-1i-i-ii-ii1-i-1i    linear of order 4
ρ92222002-2-200222000000-20-20    orthogonal lifted from D4
ρ10222200-122-2-2-1-1-1000011-11-11    orthogonal lifted from D6
ρ1122-2-20022-2002-2-2000000-2020    orthogonal lifted from D4
ρ12222200-12222-1-1-10000-1-1-1-1-1-1    orthogonal lifted from S3
ρ132-22-20020000-22-22-22-2000000    orthogonal lifted from D8
ρ1422-2-200-12-200-11100003-31-3-13    orthogonal lifted from D12
ρ152-22-20020000-22-2-22-22000000    orthogonal lifted from D8
ρ1622-2-200-12-200-1110000-3313-1-3    orthogonal lifted from D12
ρ1722-2-200-1-222i-2i-1110000i-i-1i1-i    complex lifted from C4×S3
ρ18222200-1-2-200-1-1-10000--3--31-31-3    complex lifted from C3⋊D4
ρ192-2-220020000-2-22-2-2--2--2000000    complex lifted from SD16
ρ2022-2-200-1-22-2i2i-1110000-ii-1-i1i    complex lifted from C4×S3
ρ21222200-1-2-200-1-1-10000-3-31--31--3    complex lifted from C3⋊D4
ρ222-2-220020000-2-22--2--2-2-2000000    complex lifted from SD16
ρ234-44-400-200002-220000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ244-4-4400-2000022-20000000000    orthogonal lifted from Q82S3

Smallest permutation representation of C6.D8
On 48 points
Generators in S48
(1 34 20 15 26 41)(2 42 27 16 21 35)(3 36 22 9 28 43)(4 44 29 10 23 37)(5 38 24 11 30 45)(6 46 31 12 17 39)(7 40 18 13 32 47)(8 48 25 14 19 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 14)(3 7)(4 12)(6 10)(8 16)(9 13)(17 37)(18 28)(19 35)(20 26)(21 33)(22 32)(23 39)(24 30)(25 42)(27 48)(29 46)(31 44)(34 41)(36 47)(38 45)(40 43)

G:=sub<Sym(48)| (1,34,20,15,26,41)(2,42,27,16,21,35)(3,36,22,9,28,43)(4,44,29,10,23,37)(5,38,24,11,30,45)(6,46,31,12,17,39)(7,40,18,13,32,47)(8,48,25,14,19,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,14)(3,7)(4,12)(6,10)(8,16)(9,13)(17,37)(18,28)(19,35)(20,26)(21,33)(22,32)(23,39)(24,30)(25,42)(27,48)(29,46)(31,44)(34,41)(36,47)(38,45)(40,43)>;

G:=Group( (1,34,20,15,26,41)(2,42,27,16,21,35)(3,36,22,9,28,43)(4,44,29,10,23,37)(5,38,24,11,30,45)(6,46,31,12,17,39)(7,40,18,13,32,47)(8,48,25,14,19,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,14)(3,7)(4,12)(6,10)(8,16)(9,13)(17,37)(18,28)(19,35)(20,26)(21,33)(22,32)(23,39)(24,30)(25,42)(27,48)(29,46)(31,44)(34,41)(36,47)(38,45)(40,43) );

G=PermutationGroup([[(1,34,20,15,26,41),(2,42,27,16,21,35),(3,36,22,9,28,43),(4,44,29,10,23,37),(5,38,24,11,30,45),(6,46,31,12,17,39),(7,40,18,13,32,47),(8,48,25,14,19,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,14),(3,7),(4,12),(6,10),(8,16),(9,13),(17,37),(18,28),(19,35),(20,26),(21,33),(22,32),(23,39),(24,30),(25,42),(27,48),(29,46),(31,44),(34,41),(36,47),(38,45),(40,43)]])

C6.D8 is a maximal subgroup of
Dic3.SD16  Dic62D4  C4⋊C4.D6  S3×D4⋊C4  C4⋊C419D6  D4⋊D12  D65SD16  D123D4  (C2×C8).D6  Dic6.11D4  Q8⋊C4⋊S3  Q87(C4×S3)  C4⋊C4.150D6  Q8.11D12  Q84D12  D12.12D4  Dic38SD16  D6.4SD16  C88D12  C247D4  C4.Q8⋊S3  D249C4  D12⋊Q8  D12.Q8  Dic35D8  D6.5D8  D62D8  C2.D8⋊S3  C83D12  C24⋊C2⋊C4  D122Q8  D12.2Q8  C4○D12⋊C4  (C2×C6).40D8  C4⋊C4.228D6  C4⋊C436D6  C4.(C2×D12)  C4⋊C4.236D6  C4×D4⋊S3  C42.48D6  C127D8  D4.1D12  C4×Q82S3  C42.56D6  Q82D12  Q8.6D12  D1216D4  D1217D4  C3⋊C822D4  C4⋊D4⋊S3  D12.36D4  D12.37D4  C3⋊C824D4  C3⋊C86D4  D12.4Q8  C42.70D6  C42.216D6  D125Q8  D126Q8  C12.D8  C42.82D6  C18.D8  D123Dic3  C6.17D24  C62.113D4  D12⋊Dic5  D6012C4  D609C4  D60⋊C4
C6.D8 is a maximal quotient of
C6.C4≀C2  C12.47D8  D122C8  C4.D24  D248C4  C6.D16  C6.Q32  D24.C4  C24.8D4  Dic12.C4  C12.C42  C18.D8  D123Dic3  C6.17D24  C62.113D4  D12⋊Dic5  D6012C4  D609C4  D60⋊C4

Matrix representation of C6.D8 in GL4(𝔽73) generated by

1000
0100
0001
00721
,
571600
575700
00046
00460
,
1000
07200
0001
0010
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,1],[57,57,0,0,16,57,0,0,0,0,0,46,0,0,46,0],[1,0,0,0,0,72,0,0,0,0,0,1,0,0,1,0] >;

C6.D8 in GAP, Magma, Sage, TeX

C_6.D_8
% in TeX

G:=Group("C6.D8");
// GroupNames label

G:=SmallGroup(96,16);
// by ID

G=gap.SmallGroup(96,16);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,121,31,579,297,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^6=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=a^3*b^-1>;
// generators/relations

Export

Subgroup lattice of C6.D8 in TeX
Character table of C6.D8 in TeX

׿
×
𝔽