metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C6.5D8, D12⋊2C4, C2.2D24, C12.45D4, C6.3SD16, C22.10D12, (C2×C8)⋊2S3, (C2×C24)⋊2C2, C4.8(C4×S3), C4⋊Dic3⋊1C2, (C2×C4).71D6, (C2×C6).15D4, C3⋊2(D4⋊C4), C12.18(C2×C4), C2.8(D6⋊C4), (C2×D12).1C2, C2.3(C24⋊C2), C4.20(C3⋊D4), C6.7(C22⋊C4), (C2×C12).83C22, SmallGroup(96,28)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2.D24
G = < a,b,c | a2=b24=1, c2=a, ab=ba, ac=ca, cbc-1=ab-1 >
Character table of C2.D24
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | 1 | -1 | -i | -i | i | i | 1 | -1 | -1 | 1 | -i | i | i | -i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | 1 | -1 | i | i | -i | -i | 1 | -1 | -1 | 1 | i | -i | -i | i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | 1 | -1 | i | i | -i | -i | 1 | -1 | -1 | 1 | i | -i | -i | i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | 1 | -1 | -i | -i | i | i | 1 | -1 | -1 | 1 | -i | i | i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√3 | -√3 | -√3 | √3 | √3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √2 | -√2 | √2 | -√2 | √3 | √3 | -√3 | -√3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | orthogonal lifted from D24 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √2 | -√2 | √2 | -√2 | -√3 | -√3 | √3 | √3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | orthogonal lifted from D24 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √3 | √3 | √3 | -√3 | -√3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√2 | √2 | -√2 | √2 | √3 | √3 | -√3 | -√3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | orthogonal lifted from D24 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√2 | √2 | -√2 | √2 | -√3 | -√3 | √3 | √3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | orthogonal lifted from D24 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 1 | -1 | 1 | 2i | 2i | -2i | -2i | -1 | 1 | 1 | -1 | -i | i | i | -i | i | i | -i | -i | complex lifted from C4×S3 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 1 | -1 | 1 | -2i | -2i | 2i | 2i | -1 | 1 | 1 | -1 | i | -i | -i | i | -i | -i | i | i | complex lifted from C4×S3 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √-2 | -√-2 | -√-2 | √-2 | √3 | -√3 | √3 | -√3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | complex lifted from C24⋊C2 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | -√-3 | √-3 | √-3 | √-3 | -√-3 | -√-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | √-3 | -√-3 | -√-3 | -√-3 | √-3 | √-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√-2 | √-2 | √-2 | -√-2 | -√3 | √3 | -√3 | √3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | complex lifted from C24⋊C2 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√-2 | √-2 | √-2 | -√-2 | √3 | -√3 | √3 | -√3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | complex lifted from C24⋊C2 |
ρ29 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ30 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √-2 | -√-2 | -√-2 | √-2 | -√3 | √3 | -√3 | √3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | complex lifted from C24⋊C2 |
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 42 43 24)(2 23 44 41)(3 40 45 22)(4 21 46 39)(5 38 47 20)(6 19 48 37)(7 36 25 18)(8 17 26 35)(9 34 27 16)(10 15 28 33)(11 32 29 14)(12 13 30 31)
G:=sub<Sym(48)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42,43,24)(2,23,44,41)(3,40,45,22)(4,21,46,39)(5,38,47,20)(6,19,48,37)(7,36,25,18)(8,17,26,35)(9,34,27,16)(10,15,28,33)(11,32,29,14)(12,13,30,31)>;
G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42,43,24)(2,23,44,41)(3,40,45,22)(4,21,46,39)(5,38,47,20)(6,19,48,37)(7,36,25,18)(8,17,26,35)(9,34,27,16)(10,15,28,33)(11,32,29,14)(12,13,30,31) );
G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42,43,24),(2,23,44,41),(3,40,45,22),(4,21,46,39),(5,38,47,20),(6,19,48,37),(7,36,25,18),(8,17,26,35),(9,34,27,16),(10,15,28,33),(11,32,29,14),(12,13,30,31)]])
C2.D24 is a maximal subgroup of
C4×C24⋊C2 C4×D24 C4.5D24 C42.264D6 C42.16D6 D24⋊C4 C42.19D6 C42.20D6 D12.31D4 D12⋊13D4 D12.32D4 D12⋊14D4 C23.43D12 C22.D24 C23.18D12 Dic3⋊4D8 Dic3.SD16 C4⋊C4.D6 S3×D4⋊C4 C4⋊C4⋊19D6 D6⋊D8 C3⋊C8⋊D4 D4⋊S3⋊C4 Dic3⋊7SD16 (C2×C8).D6 Q8⋊C4⋊S3 Q8⋊7(C4×S3) C4⋊C4.150D6 D6⋊2SD16 C3⋊(C8⋊D4) Q8⋊3(C4×S3) D12⋊3Q8 C4⋊D24 D12.19D4 C42.36D6 D12⋊4Q8 D12.3Q8 Dic6⋊8D4 D6.4SD16 C4.Q8⋊S3 D12⋊Q8 D12.Q8 D6.5D8 C2.D8⋊S3 D12⋊2Q8 D12.2Q8 C23.28D12 C24⋊30D4 C24⋊29D4 C23.53D12 C23.54D12 C24⋊2D4 C24⋊3D4 Dic3⋊D8 D12⋊D4 Dic3⋊5SD16 (C3×D4).D4 D6⋊6SD16 D12⋊7D4 (C2×Q16)⋊S3 D12.17D4 C2.D72 C6.16D24 C6.17D24 C62.84D4 C10.D24 D60⋊15C4 D60⋊8C4 D12⋊F5
C2.D24 is a maximal quotient of
C4.17D24 C22.2D24 C4.D24 C12.2D8 C2.Dic24 C2.D48 D24.1C4 M5(2)⋊S3 C12.4D8 D24⋊2C4 C12.9C42 C2.D72 C6.16D24 C6.17D24 C62.84D4 C10.D24 D60⋊15C4 D60⋊8C4 D12⋊F5
Matrix representation of C2.D24 ►in GL5(𝔽73)
72 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
46 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 25 |
0 | 0 | 0 | 35 | 32 |
27 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 |
0 | 0 | 0 | 38 | 0 |
G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[46,0,0,0,0,0,0,1,0,0,0,72,1,0,0,0,0,0,0,35,0,0,0,25,32],[27,0,0,0,0,0,0,72,0,0,0,72,0,0,0,0,0,0,0,38,0,0,0,25,0] >;
C2.D24 in GAP, Magma, Sage, TeX
C_2.D_{24}
% in TeX
G:=Group("C2.D24");
// GroupNames label
G:=SmallGroup(96,28);
// by ID
G=gap.SmallGroup(96,28);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,73,79,362,86,2309]);
// Polycyclic
G:=Group<a,b,c|a^2=b^24=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C2.D24 in TeX
Character table of C2.D24 in TeX