Extensions 1→N→G→Q→1 with N=C2 and Q=C2×D12

Direct product G=N×Q with N=C2 and Q=C2×D12
dρLabelID
C22×D1248C2^2xD1296,207


Non-split extensions G=N.Q with N=C2 and Q=C2×D12
extensionφ:Q→Aut NdρLabelID
C2.1(C2×D12) = C4×D12central extension (φ=1)48C2.1(C2xD12)96,80
C2.2(C2×D12) = C2×C4⋊Dic3central extension (φ=1)96C2.2(C2xD12)96,132
C2.3(C2×D12) = C2×D6⋊C4central extension (φ=1)48C2.3(C2xD12)96,134
C2.4(C2×D12) = C122Q8central stem extension (φ=1)96C2.4(C2xD12)96,76
C2.5(C2×D12) = C4⋊D12central stem extension (φ=1)48C2.5(C2xD12)96,81
C2.6(C2×D12) = C427S3central stem extension (φ=1)48C2.6(C2xD12)96,82
C2.7(C2×D12) = D6⋊D4central stem extension (φ=1)24C2.7(C2xD12)96,89
C2.8(C2×D12) = C23.21D6central stem extension (φ=1)48C2.8(C2xD12)96,93
C2.9(C2×D12) = C12⋊D4central stem extension (φ=1)48C2.9(C2xD12)96,102
C2.10(C2×D12) = C4.D12central stem extension (φ=1)48C2.10(C2xD12)96,104
C2.11(C2×D12) = C2×C24⋊C2central stem extension (φ=1)48C2.11(C2xD12)96,109
C2.12(C2×D12) = C2×D24central stem extension (φ=1)48C2.12(C2xD12)96,110
C2.13(C2×D12) = C4○D24central stem extension (φ=1)482C2.13(C2xD12)96,111
C2.14(C2×D12) = C2×Dic12central stem extension (φ=1)96C2.14(C2xD12)96,112
C2.15(C2×D12) = C8⋊D6central stem extension (φ=1)244+C2.15(C2xD12)96,115
C2.16(C2×D12) = C8.D6central stem extension (φ=1)484-C2.16(C2xD12)96,116
C2.17(C2×D12) = C127D4central stem extension (φ=1)48C2.17(C2xD12)96,137

׿
×
𝔽