metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4○D24, D24⋊7C2, C4○Dic12, C8.17D6, C4.20D12, C12.35D4, Dic12⋊7C2, C22.1D12, C12.30C23, C24.17C22, D12.7C22, Dic6.6C22, (C2×C8)⋊4S3, (C2×C24)⋊6C2, C3⋊1(C4○D8), C4○(C24⋊C2), C24⋊C2⋊7C2, C4○D12⋊1C2, C6.11(C2×D4), (C2×C6).18D4, (C2×C4).81D6, C2.13(C2×D12), C4.28(C22×S3), (C2×C12).99C22, SmallGroup(96,111)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4○D24
G = < a,b,c | a4=c2=1, b12=a2, ab=ba, ac=ca, cbc=a2b11 >
Subgroups: 162 in 62 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C4○D8, C24⋊C2, D24, Dic12, C2×C24, C4○D12, C4○D24
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C4○D8, C2×D12, C4○D24
Character table of C4○D24
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 12 | 12 | 2 | 1 | 1 | 2 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | 2 | -2 | -2 | 2 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | -2 | 2 | 2 | -2 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -√3 | √3 | √3 | -√3 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ16 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√3 | -√3 | √3 | -√3 | √3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √3 | √3 | -√3 | √3 | -√3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | √3 | -√3 | -√3 | √3 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ19 | 2 | -2 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | -2 | 0 | 0 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 2i | -2i | √2 | -√-2 | -√2 | -√2 | -√-2 | √-2 | √2 | √-2 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | -2 | 0 | 0 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | -2i | 2i | -√2 | -√-2 | √2 | √2 | -√-2 | √-2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | -2 | 0 | 0 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | -2i | 2i | √2 | √-2 | -√2 | -√2 | √-2 | -√-2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | -2 | 0 | 0 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 2i | -2i | -√2 | √-2 | √2 | √2 | √-2 | -√-2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ23 | 2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 1 | -√-3 | √-3 | -√-2 | √2 | -√2 | √-2 | √3 | -√3 | -i | i | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 1 | -√-3 | √-3 | √-2 | -√2 | √2 | -√-2 | √3 | -√3 | -i | i | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87-ζ85ζ3 | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 1 | √-3 | -√-3 | √-2 | -√2 | √2 | -√-2 | -√3 | √3 | -i | i | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 1 | -√-3 | √-3 | √-2 | √2 | -√2 | -√-2 | -√3 | √3 | i | -i | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ87-ζ85ζ32 | complex faithful |
ρ27 | 2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 1 | √-3 | -√-3 | √-2 | √2 | -√2 | -√-2 | √3 | -√3 | i | -i | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | complex faithful |
ρ28 | 2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 1 | √-3 | -√-3 | -√-2 | -√2 | √2 | √-2 | √3 | -√3 | i | -i | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ83-ζ8ζ3 | complex faithful |
ρ29 | 2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 1 | -√-3 | √-3 | -√-2 | -√2 | √2 | √-2 | -√3 | √3 | i | -i | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | complex faithful |
ρ30 | 2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 1 | √-3 | -√-3 | -√-2 | √2 | -√2 | √-2 | -√3 | √3 | -i | i | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83-ζ8ζ32 | complex faithful |
(1 45 13 33)(2 46 14 34)(3 47 15 35)(4 48 16 36)(5 25 17 37)(6 26 18 38)(7 27 19 39)(8 28 20 40)(9 29 21 41)(10 30 22 42)(11 31 23 43)(12 32 24 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 24)(17 23)(18 22)(19 21)(25 31)(26 30)(27 29)(32 48)(33 47)(34 46)(35 45)(36 44)(37 43)(38 42)(39 41)
G:=sub<Sym(48)| (1,45,13,33)(2,46,14,34)(3,47,15,35)(4,48,16,36)(5,25,17,37)(6,26,18,38)(7,27,19,39)(8,28,20,40)(9,29,21,41)(10,30,22,42)(11,31,23,43)(12,32,24,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,31)(26,30)(27,29)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)>;
G:=Group( (1,45,13,33)(2,46,14,34)(3,47,15,35)(4,48,16,36)(5,25,17,37)(6,26,18,38)(7,27,19,39)(8,28,20,40)(9,29,21,41)(10,30,22,42)(11,31,23,43)(12,32,24,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,31)(26,30)(27,29)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41) );
G=PermutationGroup([[(1,45,13,33),(2,46,14,34),(3,47,15,35),(4,48,16,36),(5,25,17,37),(6,26,18,38),(7,27,19,39),(8,28,20,40),(9,29,21,41),(10,30,22,42),(11,31,23,43),(12,32,24,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,24),(17,23),(18,22),(19,21),(25,31),(26,30),(27,29),(32,48),(33,47),(34,46),(35,45),(36,44),(37,43),(38,42),(39,41)]])
C4○D24 is a maximal subgroup of
D24⋊8C4 Dic12.C4 D24.1C4 D24⋊2C4 D24⋊11C4 D24⋊4C4 D24⋊10C4 D24⋊7C4 D48⋊7C2 C16⋊D6 C16.D6 D8.D6 C24.27C23 Q16.D6 C24.9C23 D4.11D12 D4.12D12 D4.13D12 D8⋊13D6 SD16⋊13D6 D12.30D4 S3×C4○D8 SD16⋊D6 D72⋊7C2 D6.1D12 D24⋊7S3 D6.3D12 D12.27D6 C24.78D6 C40.31D6 D24⋊7D5 D120⋊C2 C20.60D12 C40.69D6
C4○D24 is a maximal quotient of
C24.13Q8 C4×C24⋊C2 C4×D24 C8.8D12 C42.264D6 C4×Dic12 C23.15D12 D12.32D4 D12⋊14D4 C23.18D12 Dic6.3Q8 D12.19D4 C42.36D6 D12.3Q8 C23.27D12 C23.28D12 C24⋊30D4 C24⋊29D4 C24.82D4 D72⋊7C2 D6.1D12 D24⋊7S3 D6.3D12 D12.27D6 C24.78D6 C40.31D6 D24⋊7D5 D120⋊C2 C20.60D12 C40.69D6
Matrix representation of C4○D24 ►in GL2(𝔽73) generated by
27 | 0 |
0 | 27 |
55 | 50 |
23 | 5 |
66 | 7 |
14 | 7 |
G:=sub<GL(2,GF(73))| [27,0,0,27],[55,23,50,5],[66,14,7,7] >;
C4○D24 in GAP, Magma, Sage, TeX
C_4\circ D_{24}
% in TeX
G:=Group("C4oD24");
// GroupNames label
G:=SmallGroup(96,111);
// by ID
G=gap.SmallGroup(96,111);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,50,579,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^4=c^2=1,b^12=a^2,a*b=b*a,a*c=c*a,c*b*c=a^2*b^11>;
// generators/relations
Export