Copied to
clipboard

G = C2xD24order 96 = 25·3

Direct product of C2 and D24

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD24, C8:7D6, C6:1D8, C4.7D12, C24:8C22, C12.30D4, D12:3C22, C12.29C23, C22.13D12, C3:1(C2xD8), (C2xC8):3S3, (C2xC24):5C2, (C2xD12):5C2, (C2xC4).80D6, (C2xC6).17D4, C6.10(C2xD4), C2.12(C2xD12), C4.27(C22xS3), (C2xC12).89C22, SmallGroup(96,110)

Series: Derived Chief Lower central Upper central

C1C12 — C2xD24
C1C3C6C12D12C2xD12 — C2xD24
C3C6C12 — C2xD24
C1C22C2xC4C2xC8

Generators and relations for C2xD24
 G = < a,b,c | a2=b24=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 258 in 76 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2xC4, D4, C23, C12, D6, C2xC6, C2xC8, D8, C2xD4, C24, D12, D12, C2xC12, C22xS3, C2xD8, D24, C2xC24, C2xD12, C2xD24
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, D12, C22xS3, C2xD8, D24, C2xD12, C2xD24

Character table of C2xD24

 class 12A2B2C2D2E2F2G34A4B6A6B6C8A8B8C8D12A12B12C12D24A24B24C24D24E24F24G24H
 size 1111121212122222222222222222222222
ρ1111111111111111111111111111111    trivial
ρ21-1-1111-1-11-11-1-11-111-1-1-111-1-1111-1-11    linear of order 2
ρ311111-11-1111111-1-1-1-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ41-1-111-1-111-11-1-111-1-11-1-11111-1-1-111-1    linear of order 2
ρ51111-11-11111111-1-1-1-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ61-1-11-111-11-11-1-111-1-11-1-11111-1-1-111-1    linear of order 2
ρ71-1-11-1-1111-11-1-11-111-1-1-111-1-1111-1-11    linear of order 2
ρ81111-1-1-1-11111111111111111111111    linear of order 2
ρ922220000-122-1-1-1-2-2-2-2-1-1-1-111111111    orthogonal lifted from D6
ρ102-2-220000-1-2211-12-2-2211-1-1-1-1111-1-11    orthogonal lifted from D6
ρ11222200002-2-22220000-2-2-2-200000000    orthogonal lifted from D4
ρ122-2-22000022-2-2-22000022-2-200000000    orthogonal lifted from D4
ρ1322220000-122-1-1-12222-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ142-2-220000-1-2211-1-222-211-1-111-1-1-111-1    orthogonal lifted from D6
ρ1522-2-200002002-2-2-2-2220000-2-222-222-2    orthogonal lifted from D8
ρ162-22-20000200-22-22-22-200002222-2-2-2-2    orthogonal lifted from D8
ρ172-22-20000200-22-2-22-220000-2-2-2-22222    orthogonal lifted from D8
ρ1822-2-200002002-2-222-2-2000022-2-22-2-22    orthogonal lifted from D8
ρ1922220000-1-2-2-1-1-1000011113-33-333-3-3    orthogonal lifted from D12
ρ202-2-220000-12-211-10000-1-111-333-33-33-3    orthogonal lifted from D12
ρ2122220000-1-2-2-1-1-100001111-33-33-3-333    orthogonal lifted from D12
ρ222-2-220000-12-211-10000-1-1113-3-33-33-33    orthogonal lifted from D12
ρ232-22-20000-1001-112-22-2-33-33ζ87ζ385ζ385ζ83ζ3838ζ3ζ87ζ385ζ385ζ83ζ3838ζ3ζ87ζ328785ζ32ζ87ζ328785ζ32ζ83ζ328ζ328ζ83ζ328ζ328    orthogonal lifted from D24
ρ242-22-20000-1001-11-22-223-33-3ζ83ζ328ζ328ζ87ζ328785ζ32ζ83ζ328ζ328ζ87ζ328785ζ32ζ83ζ3838ζ3ζ83ζ3838ζ3ζ87ζ385ζ385ζ87ζ385ζ385    orthogonal lifted from D24
ρ2522-2-20000-100-111-2-2223-3-33ζ87ζ328785ζ32ζ83ζ328ζ328ζ87ζ385ζ385ζ83ζ3838ζ3ζ87ζ328785ζ32ζ87ζ385ζ385ζ83ζ3838ζ3ζ83ζ328ζ328    orthogonal lifted from D24
ρ262-22-20000-1001-11-22-22-33-33ζ87ζ328785ζ32ζ83ζ328ζ328ζ87ζ328785ζ32ζ83ζ328ζ328ζ87ζ385ζ385ζ87ζ385ζ385ζ83ζ3838ζ3ζ83ζ3838ζ3    orthogonal lifted from D24
ρ2722-2-20000-100-11122-2-23-3-33ζ87ζ385ζ385ζ83ζ3838ζ3ζ87ζ328785ζ32ζ83ζ328ζ328ζ87ζ385ζ385ζ87ζ328785ζ32ζ83ζ328ζ328ζ83ζ3838ζ3    orthogonal lifted from D24
ρ282-22-20000-1001-112-22-23-33-3ζ83ζ3838ζ3ζ87ζ385ζ385ζ83ζ3838ζ3ζ87ζ385ζ385ζ83ζ328ζ328ζ83ζ328ζ328ζ87ζ328785ζ32ζ87ζ328785ζ32    orthogonal lifted from D24
ρ2922-2-20000-100-11122-2-2-333-3ζ83ζ3838ζ3ζ87ζ385ζ385ζ83ζ328ζ328ζ87ζ328785ζ32ζ83ζ3838ζ3ζ83ζ328ζ328ζ87ζ328785ζ32ζ87ζ385ζ385    orthogonal lifted from D24
ρ3022-2-20000-100-111-2-222-333-3ζ83ζ328ζ328ζ87ζ328785ζ32ζ83ζ3838ζ3ζ87ζ385ζ385ζ83ζ328ζ328ζ83ζ3838ζ3ζ87ζ385ζ385ζ87ζ328785ζ32    orthogonal lifted from D24

Smallest permutation representation of C2xD24
On 48 points
Generators in S48
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 6)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(25 35)(26 34)(27 33)(28 32)(29 31)(36 48)(37 47)(38 46)(39 45)(40 44)(41 43)

G:=sub<Sym(48)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,35)(26,34)(27,33)(28,32)(29,31)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,35)(26,34)(27,33)(28,32)(29,31)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,6),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(25,35),(26,34),(27,33),(28,32),(29,31),(36,48),(37,47),(38,46),(39,45),(40,44),(41,43)]])

C2xD24 is a maximal subgroup of
C6.D16  D24.C4  C2.D48  M5(2):S3  C12:4D8  C8.8D12  D24:C4  C8:D12  D12:13D4  D12:14D4  D4:D12  D12:3D4  Q8:4D12  D12.12D4  C4:D24  D12.19D4  C24:7D4  D24:9C4  Dic3:5D8  D6:2D8  C24.19D4  C16:D6  C24:29D4  C24:3D4  Q8.9D12  C24:5D4  C24:9D4  C24.28D4  Q16:D6  D4.12D12  C2xS3xD8  D8:15D6
C2xD24 is a maximal quotient of
C24:8Q8  C4.5D24  C12:4D8  D12:13D4  C22.D24  C4:D24  D12:4Q8  D48:7C2  C16:D6  C16.D6  C24:29D4

Matrix representation of C2xD24 in GL5(F73)

720000
01000
00100
000720
000072
,
720000
00100
0727200
000048
0003841
,
720000
00100
01000
00010
0004872

G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,1,72,0,0,0,0,0,0,38,0,0,0,48,41],[72,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,48,0,0,0,0,72] >;

C2xD24 in GAP, Magma, Sage, TeX

C_2\times D_{24}
% in TeX

G:=Group("C2xD24");
// GroupNames label

G:=SmallGroup(96,110);
// by ID

G=gap.SmallGroup(96,110);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,122,579,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^2=b^24=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Character table of C2xD24 in TeX

׿
x
:
Z
F
o
wr
Q
<