Extensions 1→N→G→Q→1 with N=S3×C8 and Q=C2

Direct product G=N×Q with N=S3×C8 and Q=C2
dρLabelID
S3×C2×C848S3xC2xC896,106

Semidirect products G=N:Q with N=S3×C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C8)⋊1C2 = S3×D8φ: C2/C1C2 ⊆ Out S3×C8244+(S3xC8):1C296,117
(S3×C8)⋊2C2 = D83S3φ: C2/C1C2 ⊆ Out S3×C8484-(S3xC8):2C296,119
(S3×C8)⋊3C2 = D24⋊C2φ: C2/C1C2 ⊆ Out S3×C8484+(S3xC8):3C296,126
(S3×C8)⋊4C2 = S3×SD16φ: C2/C1C2 ⊆ Out S3×C8244(S3xC8):4C296,120
(S3×C8)⋊5C2 = Q8.7D6φ: C2/C1C2 ⊆ Out S3×C8484(S3xC8):5C296,123
(S3×C8)⋊6C2 = C8○D12φ: C2/C1C2 ⊆ Out S3×C8482(S3xC8):6C296,108
(S3×C8)⋊7C2 = S3×M4(2)φ: C2/C1C2 ⊆ Out S3×C8244(S3xC8):7C296,113
(S3×C8)⋊8C2 = D12.C4φ: C2/C1C2 ⊆ Out S3×C8484(S3xC8):8C296,114

Non-split extensions G=N.Q with N=S3×C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C8).1C2 = S3×Q16φ: C2/C1C2 ⊆ Out S3×C8484-(S3xC8).1C296,124
(S3×C8).2C2 = D6.C8φ: C2/C1C2 ⊆ Out S3×C8482(S3xC8).2C296,5
(S3×C8).3C2 = S3×C16φ: trivial image482(S3xC8).3C296,4

׿
×
𝔽