Copied to
clipboard

G = D24:C2order 96 = 25·3

5th semidirect product of D24 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D24:5C2, Q16:3S3, Dic3oQ16, D6.3D4, C8.10D6, Q8.10D6, C24.8C22, C12.10C23, Dic3.14D4, D12.5C22, (S3xC8):3C2, C3:4(C4oD8), (C3xQ16):3C2, C2.24(S3xD4), C6.36(C2xD4), C3:C8.8C22, Q8:2S3:4C2, Q8:3S3:3C2, C4.10(C22xS3), (C3xQ8).5C22, (C4xS3).12C22, SmallGroup(96,126)

Series: Derived Chief Lower central Upper central

C1C12 — D24:C2
C1C3C6C12C4xS3Q8:3S3 — D24:C2
C3C6C12 — D24:C2
C1C2C4Q16

Generators and relations for D24:C2
 G = < a,b,c | a24=b2=c2=1, bab=a-1, cac=a17, cbc=a4b >

Subgroups: 162 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2xC4, D4, Q8, Dic3, C12, C12, D6, D6, C2xC8, D8, SD16, Q16, C4oD4, C3:C8, C24, C4xS3, C4xS3, D12, D12, C3xQ8, C4oD8, S3xC8, D24, Q8:2S3, C3xQ16, Q8:3S3, D24:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C22xS3, C4oD8, S3xD4, D24:C2

Character table of D24:C2

 class 12A2B2C2D34A4B4C4D4E68A8B8C8D12A12B12C24A24B
 size 11612122233442226648844
ρ1111111111111111111111    trivial
ρ211-11111-1-1-1-1111-1-11-1-111    linear of order 2
ρ3111-1111111-11-1-1-1-11-11-1-1    linear of order 2
ρ41111-11111-111-1-1-1-111-1-1-1    linear of order 2
ρ511-1-1-111-1-111111-1-111111    linear of order 2
ρ611-1-1111-1-1-111-1-11111-1-1-1    linear of order 2
ρ711-11-111-1-11-11-1-1111-11-1-1    linear of order 2
ρ8111-1-11111-1-1111111-1-111    linear of order 2
ρ922000-1200-22-1-2-200-1-1111    orthogonal lifted from D6
ρ1022000-1200-2-2-12200-111-1-1    orthogonal lifted from D6
ρ11222002-2-2-20020000-20000    orthogonal lifted from D4
ρ1222-2002-2220020000-20000    orthogonal lifted from D4
ρ1322000-120022-12200-1-1-1-1-1    orthogonal lifted from S3
ρ1422000-12002-2-1-2-200-11-111    orthogonal lifted from D6
ρ152-2000202i-2i00-22-2--2-2000-22    complex lifted from C4oD8
ρ162-200020-2i2i00-2-22--2-20002-2    complex lifted from C4oD8
ρ172-200020-2i2i00-22-2-2--2000-22    complex lifted from C4oD8
ρ182-2000202i-2i00-2-22-2--20002-2    complex lifted from C4oD8
ρ1944000-2-40000-2000020000    orthogonal lifted from S3xD4
ρ204-4000-200000222-22000002-2    orthogonal faithful
ρ214-4000-2000002-222200000-22    orthogonal faithful

Smallest permutation representation of D24:C2
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(45 48)(46 47)
(1 29)(2 46)(3 39)(4 32)(5 25)(6 42)(7 35)(8 28)(9 45)(10 38)(11 31)(12 48)(13 41)(14 34)(15 27)(16 44)(17 37)(18 30)(19 47)(20 40)(21 33)(22 26)(23 43)(24 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(45,48),(46,47)], [(1,29),(2,46),(3,39),(4,32),(5,25),(6,42),(7,35),(8,28),(9,45),(10,38),(11,31),(12,48),(13,41),(14,34),(15,27),(16,44),(17,37),(18,30),(19,47),(20,40),(21,33),(22,26),(23,43),(24,36)]])

D24:C2 is a maximal subgroup of
D48:C2  D6.2D8  Q32:S3  D48:5C2  D12.30D4  S3xC4oD8  D8:15D6  D24:C22  C24.C23  D72:5C2  D6.3D12  D24:5S3  D12.13D6  D12.14D6  C24.28D6  Dic3.5S4  D120:5C2  D24:5D5  Dic10.27D6  D12.D10  D120:8C2
D24:C2 is a maximal quotient of
Dic3:7SD16  Q8.3Dic6  Q8:C4:S3  C4:C4.150D6  D6:2SD16  Q8:4D12  D6:C8.C2  D12.12D4  Dic3:5D8  C8.6Dic6  C8.27(C4xS3)  D6:2D8  C2.D8:S3  D12.2Q8  Dic3xQ16  (C2xQ16):S3  D12.17D4  D6:3Q16  C24.28D4  D72:5C2  D6.3D12  D24:5S3  D12.13D6  D12.14D6  C24.28D6  D120:5C2  D24:5D5  Dic10.27D6  D12.D10  D120:8C2

Matrix representation of D24:C2 in GL4(F7) generated by

5346
4200
5631
6140
,
6611
6444
5301
1054
,
2524
4422
5156
4613
G:=sub<GL(4,GF(7))| [5,4,5,6,3,2,6,1,4,0,3,4,6,0,1,0],[6,6,5,1,6,4,3,0,1,4,0,5,1,4,1,4],[2,4,5,4,5,4,1,6,2,2,5,1,4,2,6,3] >;

D24:C2 in GAP, Magma, Sage, TeX

D_{24}\rtimes C_2
% in TeX

G:=Group("D24:C2");
// GroupNames label

G:=SmallGroup(96,126);
// by ID

G=gap.SmallGroup(96,126);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,103,362,116,86,297,159,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^17,c*b*c=a^4*b>;
// generators/relations

Export

Character table of D24:C2 in TeX

׿
x
:
Z
F
o
wr
Q
<