metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D24:5C2, Q16:3S3, Dic3oQ16, D6.3D4, C8.10D6, Q8.10D6, C24.8C22, C12.10C23, Dic3.14D4, D12.5C22, (S3xC8):3C2, C3:4(C4oD8), (C3xQ16):3C2, C2.24(S3xD4), C6.36(C2xD4), C3:C8.8C22, Q8:2S3:4C2, Q8:3S3:3C2, C4.10(C22xS3), (C3xQ8).5C22, (C4xS3).12C22, SmallGroup(96,126)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24:C2
G = < a,b,c | a24=b2=c2=1, bab=a-1, cac=a17, cbc=a4b >
Subgroups: 162 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2xC4, D4, Q8, Dic3, C12, C12, D6, D6, C2xC8, D8, SD16, Q16, C4oD4, C3:C8, C24, C4xS3, C4xS3, D12, D12, C3xQ8, C4oD8, S3xC8, D24, Q8:2S3, C3xQ16, Q8:3S3, D24:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C22xS3, C4oD8, S3xD4, D24:C2
Character table of D24:C2
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | |
size | 1 | 1 | 6 | 12 | 12 | 2 | 2 | 3 | 3 | 4 | 4 | 2 | 2 | 2 | 6 | 6 | 4 | 8 | 8 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | -2 | 2 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | -2 | -2 | -1 | 2 | 2 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 2 | -2 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | √2 | -√2 | -√-2 | √-2 | 0 | 0 | 0 | -√2 | √2 | complex lifted from C4oD8 |
ρ16 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | -√2 | √2 | -√-2 | √-2 | 0 | 0 | 0 | √2 | -√2 | complex lifted from C4oD8 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | √2 | -√2 | √-2 | -√-2 | 0 | 0 | 0 | -√2 | √2 | complex lifted from C4oD8 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | -√2 | √2 | √-2 | -√-2 | 0 | 0 | 0 | √2 | -√2 | complex lifted from C4oD8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(45 48)(46 47)
(1 29)(2 46)(3 39)(4 32)(5 25)(6 42)(7 35)(8 28)(9 45)(10 38)(11 31)(12 48)(13 41)(14 34)(15 27)(16 44)(17 37)(18 30)(19 47)(20 40)(21 33)(22 26)(23 43)(24 36)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(45,48),(46,47)], [(1,29),(2,46),(3,39),(4,32),(5,25),(6,42),(7,35),(8,28),(9,45),(10,38),(11,31),(12,48),(13,41),(14,34),(15,27),(16,44),(17,37),(18,30),(19,47),(20,40),(21,33),(22,26),(23,43),(24,36)]])
D24:C2 is a maximal subgroup of
D48:C2 D6.2D8 Q32:S3 D48:5C2 D12.30D4 S3xC4oD8 D8:15D6 D24:C22 C24.C23 D72:5C2 D6.3D12 D24:5S3 D12.13D6 D12.14D6 C24.28D6 Dic3.5S4 D120:5C2 D24:5D5 Dic10.27D6 D12.D10 D120:8C2
D24:C2 is a maximal quotient of
Dic3:7SD16 Q8.3Dic6 Q8:C4:S3 C4:C4.150D6 D6:2SD16 Q8:4D12 D6:C8.C2 D12.12D4 Dic3:5D8 C8.6Dic6 C8.27(C4xS3) D6:2D8 C2.D8:S3 D12.2Q8 Dic3xQ16 (C2xQ16):S3 D12.17D4 D6:3Q16 C24.28D4 D72:5C2 D6.3D12 D24:5S3 D12.13D6 D12.14D6 C24.28D6 D120:5C2 D24:5D5 Dic10.27D6 D12.D10 D120:8C2
Matrix representation of D24:C2 ►in GL4(F7) generated by
5 | 3 | 4 | 6 |
4 | 2 | 0 | 0 |
5 | 6 | 3 | 1 |
6 | 1 | 4 | 0 |
6 | 6 | 1 | 1 |
6 | 4 | 4 | 4 |
5 | 3 | 0 | 1 |
1 | 0 | 5 | 4 |
2 | 5 | 2 | 4 |
4 | 4 | 2 | 2 |
5 | 1 | 5 | 6 |
4 | 6 | 1 | 3 |
G:=sub<GL(4,GF(7))| [5,4,5,6,3,2,6,1,4,0,3,4,6,0,1,0],[6,6,5,1,6,4,3,0,1,4,0,5,1,4,1,4],[2,4,5,4,5,4,1,6,2,2,5,1,4,2,6,3] >;
D24:C2 in GAP, Magma, Sage, TeX
D_{24}\rtimes C_2
% in TeX
G:=Group("D24:C2");
// GroupNames label
G:=SmallGroup(96,126);
// by ID
G=gap.SmallGroup(96,126);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,103,362,116,86,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^17,c*b*c=a^4*b>;
// generators/relations
Export