Copied to
clipboard

G = C2xDic14order 112 = 24·7

Direct product of C2 and Dic14

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xDic14, C14:Q8, C4.11D14, C14.1C23, C22.8D14, C28.11C22, Dic7.1C22, C7:1(C2xQ8), (C2xC4).4D7, (C2xC28).4C2, C2.3(C22xD7), (C2xC14).8C22, (C2xDic7).3C2, SmallGroup(112,27)

Series: Derived Chief Lower central Upper central

C1C14 — C2xDic14
C1C7C14Dic7C2xDic7 — C2xDic14
C7C14 — C2xDic14
C1C22C2xC4

Generators and relations for C2xDic14
 G = < a,b,c | a2=b28=1, c2=b14, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 104 in 38 conjugacy classes, 27 normal (9 characteristic)
Quotients: C1, C2, C22, Q8, C23, D7, C2xQ8, D14, Dic14, C22xD7, C2xDic14
7C4
7C4
7C4
7C4
7C2xC4
7Q8
7C2xC4
7Q8
7Q8
7Q8
7C2xQ8

Smallest permutation representation of C2xDic14
Regular action on 112 points
Generators in S112
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 29)(26 30)(27 31)(28 32)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 71 15 57)(2 70 16 84)(3 69 17 83)(4 68 18 82)(5 67 19 81)(6 66 20 80)(7 65 21 79)(8 64 22 78)(9 63 23 77)(10 62 24 76)(11 61 25 75)(12 60 26 74)(13 59 27 73)(14 58 28 72)(29 103 43 89)(30 102 44 88)(31 101 45 87)(32 100 46 86)(33 99 47 85)(34 98 48 112)(35 97 49 111)(36 96 50 110)(37 95 51 109)(38 94 52 108)(39 93 53 107)(40 92 54 106)(41 91 55 105)(42 90 56 104)

G:=sub<Sym(112)| (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,29)(26,30)(27,31)(28,32)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,71,15,57)(2,70,16,84)(3,69,17,83)(4,68,18,82)(5,67,19,81)(6,66,20,80)(7,65,21,79)(8,64,22,78)(9,63,23,77)(10,62,24,76)(11,61,25,75)(12,60,26,74)(13,59,27,73)(14,58,28,72)(29,103,43,89)(30,102,44,88)(31,101,45,87)(32,100,46,86)(33,99,47,85)(34,98,48,112)(35,97,49,111)(36,96,50,110)(37,95,51,109)(38,94,52,108)(39,93,53,107)(40,92,54,106)(41,91,55,105)(42,90,56,104)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,29)(26,30)(27,31)(28,32)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,71,15,57)(2,70,16,84)(3,69,17,83)(4,68,18,82)(5,67,19,81)(6,66,20,80)(7,65,21,79)(8,64,22,78)(9,63,23,77)(10,62,24,76)(11,61,25,75)(12,60,26,74)(13,59,27,73)(14,58,28,72)(29,103,43,89)(30,102,44,88)(31,101,45,87)(32,100,46,86)(33,99,47,85)(34,98,48,112)(35,97,49,111)(36,96,50,110)(37,95,51,109)(38,94,52,108)(39,93,53,107)(40,92,54,106)(41,91,55,105)(42,90,56,104) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,29),(26,30),(27,31),(28,32),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,71,15,57),(2,70,16,84),(3,69,17,83),(4,68,18,82),(5,67,19,81),(6,66,20,80),(7,65,21,79),(8,64,22,78),(9,63,23,77),(10,62,24,76),(11,61,25,75),(12,60,26,74),(13,59,27,73),(14,58,28,72),(29,103,43,89),(30,102,44,88),(31,101,45,87),(32,100,46,86),(33,99,47,85),(34,98,48,112),(35,97,49,111),(36,96,50,110),(37,95,51,109),(38,94,52,108),(39,93,53,107),(40,92,54,106),(41,91,55,105),(42,90,56,104)]])

C2xDic14 is a maximal subgroup of
C14.Q16  C28.44D4  C4.12D28  C28:2Q8  C4.D28  C22:Dic14  Dic7.D4  Dic7:3Q8  C28:Q8  D14:Q8  D14:2Q8  C8.D14  C28.48D4  C28.17D4  Dic7:Q8  D4.9D14  C2xQ8xD7  D4.10D14
C2xDic14 is a maximal quotient of
C28:2Q8  C28.6Q8  C22:Dic14  C28:Q8  C28.3Q8  C28.48D4

34 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F7A7B7C14A···14I28A···28L
order122244444477714···1428···28
size111122141414142222···22···2

34 irreducible representations

dim111122222
type++++-+++-
imageC1C2C2C2Q8D7D14D14Dic14
kernelC2xDic14Dic14C2xDic7C2xC28C14C2xC4C4C22C2
# reps1421236312

Matrix representation of C2xDic14 in GL3(F29) generated by

2800
010
001
,
2800
068
0214
,
2800
0012
0120
G:=sub<GL(3,GF(29))| [28,0,0,0,1,0,0,0,1],[28,0,0,0,6,21,0,8,4],[28,0,0,0,0,12,0,12,0] >;

C2xDic14 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_{14}
% in TeX

G:=Group("C2xDic14");
// GroupNames label

G:=SmallGroup(112,27);
// by ID

G=gap.SmallGroup(112,27);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,40,182,42,2404]);
// Polycyclic

G:=Group<a,b,c|a^2=b^28=1,c^2=b^14,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C2xDic14 in TeX

׿
x
:
Z
F
o
wr
Q
<