Copied to
clipboard

G = D39⋊C3order 234 = 2·32·13

The semidirect product of D39 and C3 acting faithfully

metacyclic, supersoluble, monomial, A-group

Aliases: D39⋊C3, C391C6, C13⋊C3⋊S3, C13⋊(C3×S3), C3⋊(C13⋊C6), (C3×C13⋊C3)⋊1C2, SmallGroup(234,9)

Series: Derived Chief Lower central Upper central

C1C39 — D39⋊C3
C1C13C39C3×C13⋊C3 — D39⋊C3
C39 — D39⋊C3
C1

Generators and relations for D39⋊C3
 G = < a,b,c | a39=b2=c3=1, bab=a-1, cac-1=a22, cbc-1=a21b >

39C2
13C3
26C3
13S3
39C6
13C32
3D13
2C13⋊C3
13C3×S3
3C13⋊C6

Character table of D39⋊C3

 class 123A3B3C3D3E6A6B13A13B39A39B39C39D
 size 1392131326263939666666
ρ1111111111111111    trivial
ρ21-111111-1-1111111    linear of order 2
ρ3111ζ3ζ32ζ3ζ32ζ3ζ32111111    linear of order 3
ρ41-11ζ3ζ32ζ3ζ32ζ65ζ6111111    linear of order 6
ρ51-11ζ32ζ3ζ32ζ3ζ6ζ65111111    linear of order 6
ρ6111ζ32ζ3ζ32ζ3ζ32ζ3111111    linear of order 3
ρ720-122-1-10022-1-1-1-1    orthogonal lifted from S3
ρ820-1-1+-3-1--3ζ65ζ60022-1-1-1-1    complex lifted from C3×S3
ρ920-1-1--3-1+-3ζ6ζ650022-1-1-1-1    complex lifted from C3×S3
ρ10606000000-1-13/2-1+13/2-1+13/2-1-13/2-1+13/2-1-13/2    orthogonal lifted from C13⋊C6
ρ11606000000-1+13/2-1-13/2-1-13/2-1+13/2-1-13/2-1+13/2    orthogonal lifted from C13⋊C6
ρ1260-3000000-1-13/2-1+13/2ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132    orthogonal faithful
ρ1360-3000000-1+13/2-1-13/23ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313    orthogonal faithful
ρ1460-3000000-1+13/2-1-13/2ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134    orthogonal faithful
ρ1560-3000000-1-13/2-1+13/232ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137    orthogonal faithful

Smallest permutation representation of D39⋊C3
On 39 points
Generators in S39
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)
(2 17 23)(3 33 6)(4 10 28)(5 26 11)(7 19 16)(8 35 38)(9 12 21)(13 37 31)(15 30 36)(18 39 24)(20 32 29)(22 25 34)

G:=sub<Sym(39)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21), (2,17,23)(3,33,6)(4,10,28)(5,26,11)(7,19,16)(8,35,38)(9,12,21)(13,37,31)(15,30,36)(18,39,24)(20,32,29)(22,25,34)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21), (2,17,23)(3,33,6)(4,10,28)(5,26,11)(7,19,16)(8,35,38)(9,12,21)(13,37,31)(15,30,36)(18,39,24)(20,32,29)(22,25,34) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21)], [(2,17,23),(3,33,6),(4,10,28),(5,26,11),(7,19,16),(8,35,38),(9,12,21),(13,37,31),(15,30,36),(18,39,24),(20,32,29),(22,25,34)]])

D39⋊C3 is a maximal subgroup of   S3×C13⋊C6
D39⋊C3 is a maximal quotient of   C393C12

Matrix representation of D39⋊C3 in GL6(𝔽79)

76316112558
48664395614
25314997072
5133157721
93446274614
48186724715
,
1031948376
11530733148
73632485476
46360762863
46635456976
746976603176
,
00641310
10662900
00647700
0011501
01651200
00651400

G:=sub<GL(6,GF(79))| [76,48,25,51,9,48,31,6,31,3,34,18,61,64,49,3,46,67,12,39,9,15,27,24,55,56,70,77,46,71,8,14,72,21,14,5],[10,11,73,4,4,74,3,53,6,63,66,69,19,0,32,60,35,76,48,73,48,76,45,60,3,31,54,28,69,31,76,48,76,63,76,76],[0,1,0,0,0,0,0,0,0,0,1,0,64,66,64,1,65,65,13,29,77,15,12,14,1,0,0,0,0,0,0,0,0,1,0,0] >;

D39⋊C3 in GAP, Magma, Sage, TeX

D_{39}\rtimes C_3
% in TeX

G:=Group("D39:C3");
// GroupNames label

G:=SmallGroup(234,9);
// by ID

G=gap.SmallGroup(234,9);
# by ID

G:=PCGroup([4,-2,-3,-3,-13,146,3459,439]);
// Polycyclic

G:=Group<a,b,c|a^39=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^22,c*b*c^-1=a^21*b>;
// generators/relations

Export

Subgroup lattice of D39⋊C3 in TeX
Character table of D39⋊C3 in TeX

׿
×
𝔽