metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D55, C5⋊D11, C11⋊D5, C55⋊1C2, sometimes denoted D110 or Dih55 or Dih110, SmallGroup(110,5)
Series: Derived ►Chief ►Lower central ►Upper central
C55 — D55 |
Generators and relations for D55
G = < a,b | a55=b2=1, bab=a-1 >
Character table of D55
class | 1 | 2 | 5A | 5B | 11A | 11B | 11C | 11D | 11E | 55A | 55B | 55C | 55D | 55E | 55F | 55G | 55H | 55I | 55J | 55K | 55L | 55M | 55N | 55O | 55P | 55Q | 55R | 55S | 55T | |
size | 1 | 55 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ4 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 0 | 2 | 2 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ6 | 2 | 0 | 2 | 2 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ7 | 2 | 0 | 2 | 2 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ8 | 2 | 0 | 2 | 2 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ9 | 2 | 0 | 2 | 2 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ10 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ54ζ11+ζ5ζ1110 | ζ54ζ115+ζ5ζ116 | ζ54ζ119+ζ5ζ112 | ζ54ζ112+ζ5ζ119 | ζ54ζ116+ζ5ζ115 | ζ54ζ1110+ζ5ζ11 | ζ54ζ113+ζ5ζ118 | ζ54ζ117+ζ5ζ114 | ζ54ζ114+ζ5ζ117 | ζ53ζ114+ζ52ζ117 | ζ53ζ118+ζ52ζ113 | ζ53ζ11+ζ52ζ1110 | ζ53ζ115+ζ52ζ116 | ζ53ζ119+ζ52ζ112 | ζ53ζ112+ζ52ζ119 | ζ53ζ116+ζ52ζ115 | ζ53ζ1110+ζ52ζ11 | ζ53ζ113+ζ52ζ118 | ζ53ζ117+ζ52ζ114 | ζ54ζ118+ζ5ζ113 | orthogonal faithful |
ρ11 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ54ζ115+ζ5ζ116 | ζ54ζ113+ζ5ζ118 | ζ54ζ11+ζ5ζ1110 | ζ54ζ1110+ζ5ζ11 | ζ54ζ118+ζ5ζ113 | ζ54ζ116+ζ5ζ115 | ζ54ζ114+ζ5ζ117 | ζ54ζ112+ζ5ζ119 | ζ54ζ119+ζ5ζ112 | ζ53ζ119+ζ52ζ112 | ζ53ζ117+ζ52ζ114 | ζ53ζ115+ζ52ζ116 | ζ53ζ113+ζ52ζ118 | ζ53ζ11+ζ52ζ1110 | ζ53ζ1110+ζ52ζ11 | ζ53ζ118+ζ52ζ113 | ζ53ζ116+ζ52ζ115 | ζ53ζ114+ζ52ζ117 | ζ53ζ112+ζ52ζ119 | ζ54ζ117+ζ5ζ114 | orthogonal faithful |
ρ12 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ54ζ112+ζ5ζ119 | ζ54ζ1110+ζ5ζ11 | ζ54ζ117+ζ5ζ114 | ζ54ζ114+ζ5ζ117 | ζ54ζ11+ζ5ζ1110 | ζ54ζ119+ζ5ζ112 | ζ54ζ116+ζ5ζ115 | ζ54ζ113+ζ5ζ118 | ζ54ζ118+ζ5ζ113 | ζ53ζ118+ζ52ζ113 | ζ53ζ115+ζ52ζ116 | ζ53ζ112+ζ52ζ119 | ζ53ζ1110+ζ52ζ11 | ζ53ζ117+ζ52ζ114 | ζ53ζ114+ζ52ζ117 | ζ53ζ11+ζ52ζ1110 | ζ53ζ119+ζ52ζ112 | ζ53ζ116+ζ52ζ115 | ζ53ζ113+ζ52ζ118 | ζ54ζ115+ζ5ζ116 | orthogonal faithful |
ρ13 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ54ζ118+ζ5ζ113 | ζ54ζ117+ζ5ζ114 | ζ54ζ116+ζ5ζ115 | ζ54ζ115+ζ5ζ116 | ζ54ζ114+ζ5ζ117 | ζ54ζ113+ζ5ζ118 | ζ54ζ112+ζ5ζ119 | ζ54ζ11+ζ5ζ1110 | ζ54ζ1110+ζ5ζ11 | ζ53ζ1110+ζ52ζ11 | ζ53ζ119+ζ52ζ112 | ζ53ζ118+ζ52ζ113 | ζ53ζ117+ζ52ζ114 | ζ53ζ116+ζ52ζ115 | ζ53ζ115+ζ52ζ116 | ζ53ζ114+ζ52ζ117 | ζ53ζ113+ζ52ζ118 | ζ53ζ112+ζ52ζ119 | ζ53ζ11+ζ52ζ1110 | ζ54ζ119+ζ5ζ112 | orthogonal faithful |
ρ14 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ53ζ119+ζ52ζ112 | ζ53ζ11+ζ52ζ1110 | ζ53ζ114+ζ52ζ117 | ζ53ζ117+ζ52ζ114 | ζ53ζ1110+ζ52ζ11 | ζ53ζ112+ζ52ζ119 | ζ53ζ115+ζ52ζ116 | ζ53ζ118+ζ52ζ113 | ζ53ζ113+ζ52ζ118 | ζ54ζ118+ζ5ζ113 | ζ54ζ115+ζ5ζ116 | ζ54ζ112+ζ5ζ119 | ζ54ζ1110+ζ5ζ11 | ζ54ζ117+ζ5ζ114 | ζ54ζ114+ζ5ζ117 | ζ54ζ11+ζ5ζ1110 | ζ54ζ119+ζ5ζ112 | ζ54ζ116+ζ5ζ115 | ζ54ζ113+ζ5ζ118 | ζ53ζ116+ζ52ζ115 | orthogonal faithful |
ρ15 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ53ζ113+ζ52ζ118 | ζ53ζ114+ζ52ζ117 | ζ53ζ115+ζ52ζ116 | ζ53ζ116+ζ52ζ115 | ζ53ζ117+ζ52ζ114 | ζ53ζ118+ζ52ζ113 | ζ53ζ119+ζ52ζ112 | ζ53ζ1110+ζ52ζ11 | ζ53ζ11+ζ52ζ1110 | ζ54ζ1110+ζ5ζ11 | ζ54ζ119+ζ5ζ112 | ζ54ζ118+ζ5ζ113 | ζ54ζ117+ζ5ζ114 | ζ54ζ116+ζ5ζ115 | ζ54ζ115+ζ5ζ116 | ζ54ζ114+ζ5ζ117 | ζ54ζ113+ζ5ζ118 | ζ54ζ112+ζ5ζ119 | ζ54ζ11+ζ5ζ1110 | ζ53ζ112+ζ52ζ119 | orthogonal faithful |
ρ16 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ53ζ116+ζ52ζ115 | ζ53ζ118+ζ52ζ113 | ζ53ζ1110+ζ52ζ11 | ζ53ζ11+ζ52ζ1110 | ζ53ζ113+ζ52ζ118 | ζ53ζ115+ζ52ζ116 | ζ53ζ117+ζ52ζ114 | ζ53ζ119+ζ52ζ112 | ζ53ζ112+ζ52ζ119 | ζ54ζ119+ζ5ζ112 | ζ54ζ117+ζ5ζ114 | ζ54ζ115+ζ5ζ116 | ζ54ζ113+ζ5ζ118 | ζ54ζ11+ζ5ζ1110 | ζ54ζ1110+ζ5ζ11 | ζ54ζ118+ζ5ζ113 | ζ54ζ116+ζ5ζ115 | ζ54ζ114+ζ5ζ117 | ζ54ζ112+ζ5ζ119 | ζ53ζ114+ζ52ζ117 | orthogonal faithful |
ρ17 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ53ζ115+ζ52ζ116 | ζ53ζ113+ζ52ζ118 | ζ53ζ11+ζ52ζ1110 | ζ53ζ1110+ζ52ζ11 | ζ53ζ118+ζ52ζ113 | ζ53ζ116+ζ52ζ115 | ζ53ζ114+ζ52ζ117 | ζ53ζ112+ζ52ζ119 | ζ53ζ119+ζ52ζ112 | ζ54ζ112+ζ5ζ119 | ζ54ζ114+ζ5ζ117 | ζ54ζ116+ζ5ζ115 | ζ54ζ118+ζ5ζ113 | ζ54ζ1110+ζ5ζ11 | ζ54ζ11+ζ5ζ1110 | ζ54ζ113+ζ5ζ118 | ζ54ζ115+ζ5ζ116 | ζ54ζ117+ζ5ζ114 | ζ54ζ119+ζ5ζ112 | ζ53ζ117+ζ52ζ114 | orthogonal faithful |
ρ18 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ53ζ1110+ζ52ζ11 | ζ53ζ116+ζ52ζ115 | ζ53ζ112+ζ52ζ119 | ζ53ζ119+ζ52ζ112 | ζ53ζ115+ζ52ζ116 | ζ53ζ11+ζ52ζ1110 | ζ53ζ118+ζ52ζ113 | ζ53ζ114+ζ52ζ117 | ζ53ζ117+ζ52ζ114 | ζ54ζ114+ζ5ζ117 | ζ54ζ118+ζ5ζ113 | ζ54ζ11+ζ5ζ1110 | ζ54ζ115+ζ5ζ116 | ζ54ζ119+ζ5ζ112 | ζ54ζ112+ζ5ζ119 | ζ54ζ116+ζ5ζ115 | ζ54ζ1110+ζ5ζ11 | ζ54ζ113+ζ5ζ118 | ζ54ζ117+ζ5ζ114 | ζ53ζ113+ζ52ζ118 | orthogonal faithful |
ρ19 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ53ζ118+ζ52ζ113 | ζ53ζ117+ζ52ζ114 | ζ53ζ116+ζ52ζ115 | ζ53ζ115+ζ52ζ116 | ζ53ζ114+ζ52ζ117 | ζ53ζ113+ζ52ζ118 | ζ53ζ112+ζ52ζ119 | ζ53ζ11+ζ52ζ1110 | ζ53ζ1110+ζ52ζ11 | ζ54ζ11+ζ5ζ1110 | ζ54ζ112+ζ5ζ119 | ζ54ζ113+ζ5ζ118 | ζ54ζ114+ζ5ζ117 | ζ54ζ115+ζ5ζ116 | ζ54ζ116+ζ5ζ115 | ζ54ζ117+ζ5ζ114 | ζ54ζ118+ζ5ζ113 | ζ54ζ119+ζ5ζ112 | ζ54ζ1110+ζ5ζ11 | ζ53ζ119+ζ52ζ112 | orthogonal faithful |
ρ20 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ54ζ117+ζ5ζ114 | ζ54ζ112+ζ5ζ119 | ζ54ζ118+ζ5ζ113 | ζ54ζ113+ζ5ζ118 | ζ54ζ119+ζ5ζ112 | ζ54ζ114+ζ5ζ117 | ζ54ζ1110+ζ5ζ11 | ζ54ζ115+ζ5ζ116 | ζ54ζ116+ζ5ζ115 | ζ53ζ116+ζ52ζ115 | ζ53ζ11+ζ52ζ1110 | ζ53ζ117+ζ52ζ114 | ζ53ζ112+ζ52ζ119 | ζ53ζ118+ζ52ζ113 | ζ53ζ113+ζ52ζ118 | ζ53ζ119+ζ52ζ112 | ζ53ζ114+ζ52ζ117 | ζ53ζ1110+ζ52ζ11 | ζ53ζ115+ζ52ζ116 | ζ54ζ11+ζ5ζ1110 | orthogonal faithful |
ρ21 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ54ζ1110+ζ5ζ11 | ζ54ζ116+ζ5ζ115 | ζ54ζ112+ζ5ζ119 | ζ54ζ119+ζ5ζ112 | ζ54ζ115+ζ5ζ116 | ζ54ζ11+ζ5ζ1110 | ζ54ζ118+ζ5ζ113 | ζ54ζ114+ζ5ζ117 | ζ54ζ117+ζ5ζ114 | ζ53ζ117+ζ52ζ114 | ζ53ζ113+ζ52ζ118 | ζ53ζ1110+ζ52ζ11 | ζ53ζ116+ζ52ζ115 | ζ53ζ112+ζ52ζ119 | ζ53ζ119+ζ52ζ112 | ζ53ζ115+ζ52ζ116 | ζ53ζ11+ζ52ζ1110 | ζ53ζ118+ζ52ζ113 | ζ53ζ114+ζ52ζ117 | ζ54ζ113+ζ5ζ118 | orthogonal faithful |
ρ22 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ53ζ117+ζ52ζ114 | ζ53ζ112+ζ52ζ119 | ζ53ζ118+ζ52ζ113 | ζ53ζ113+ζ52ζ118 | ζ53ζ119+ζ52ζ112 | ζ53ζ114+ζ52ζ117 | ζ53ζ1110+ζ52ζ11 | ζ53ζ115+ζ52ζ116 | ζ53ζ116+ζ52ζ115 | ζ54ζ115+ζ5ζ116 | ζ54ζ1110+ζ5ζ11 | ζ54ζ114+ζ5ζ117 | ζ54ζ119+ζ5ζ112 | ζ54ζ113+ζ5ζ118 | ζ54ζ118+ζ5ζ113 | ζ54ζ112+ζ5ζ119 | ζ54ζ117+ζ5ζ114 | ζ54ζ11+ζ5ζ1110 | ζ54ζ116+ζ5ζ115 | ζ53ζ11+ζ52ζ1110 | orthogonal faithful |
ρ23 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ54ζ119+ζ5ζ112 | ζ54ζ11+ζ5ζ1110 | ζ54ζ114+ζ5ζ117 | ζ54ζ117+ζ5ζ114 | ζ54ζ1110+ζ5ζ11 | ζ54ζ112+ζ5ζ119 | ζ54ζ115+ζ5ζ116 | ζ54ζ118+ζ5ζ113 | ζ54ζ113+ζ5ζ118 | ζ53ζ113+ζ52ζ118 | ζ53ζ116+ζ52ζ115 | ζ53ζ119+ζ52ζ112 | ζ53ζ11+ζ52ζ1110 | ζ53ζ114+ζ52ζ117 | ζ53ζ117+ζ52ζ114 | ζ53ζ1110+ζ52ζ11 | ζ53ζ112+ζ52ζ119 | ζ53ζ115+ζ52ζ116 | ζ53ζ118+ζ52ζ113 | ζ54ζ116+ζ5ζ115 | orthogonal faithful |
ρ24 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ54ζ113+ζ5ζ118 | ζ54ζ114+ζ5ζ117 | ζ54ζ115+ζ5ζ116 | ζ54ζ116+ζ5ζ115 | ζ54ζ117+ζ5ζ114 | ζ54ζ118+ζ5ζ113 | ζ54ζ119+ζ5ζ112 | ζ54ζ1110+ζ5ζ11 | ζ54ζ11+ζ5ζ1110 | ζ53ζ11+ζ52ζ1110 | ζ53ζ112+ζ52ζ119 | ζ53ζ113+ζ52ζ118 | ζ53ζ114+ζ52ζ117 | ζ53ζ115+ζ52ζ116 | ζ53ζ116+ζ52ζ115 | ζ53ζ117+ζ52ζ114 | ζ53ζ118+ζ52ζ113 | ζ53ζ119+ζ52ζ112 | ζ53ζ1110+ζ52ζ11 | ζ54ζ112+ζ5ζ119 | orthogonal faithful |
ρ25 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ53ζ112+ζ52ζ119 | ζ53ζ1110+ζ52ζ11 | ζ53ζ117+ζ52ζ114 | ζ53ζ114+ζ52ζ117 | ζ53ζ11+ζ52ζ1110 | ζ53ζ119+ζ52ζ112 | ζ53ζ116+ζ52ζ115 | ζ53ζ113+ζ52ζ118 | ζ53ζ118+ζ52ζ113 | ζ54ζ113+ζ5ζ118 | ζ54ζ116+ζ5ζ115 | ζ54ζ119+ζ5ζ112 | ζ54ζ11+ζ5ζ1110 | ζ54ζ114+ζ5ζ117 | ζ54ζ117+ζ5ζ114 | ζ54ζ1110+ζ5ζ11 | ζ54ζ112+ζ5ζ119 | ζ54ζ115+ζ5ζ116 | ζ54ζ118+ζ5ζ113 | ζ53ζ115+ζ52ζ116 | orthogonal faithful |
ρ26 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ54ζ114+ζ5ζ117 | ζ54ζ119+ζ5ζ112 | ζ54ζ113+ζ5ζ118 | ζ54ζ118+ζ5ζ113 | ζ54ζ112+ζ5ζ119 | ζ54ζ117+ζ5ζ114 | ζ54ζ11+ζ5ζ1110 | ζ54ζ116+ζ5ζ115 | ζ54ζ115+ζ5ζ116 | ζ53ζ115+ζ52ζ116 | ζ53ζ1110+ζ52ζ11 | ζ53ζ114+ζ52ζ117 | ζ53ζ119+ζ52ζ112 | ζ53ζ113+ζ52ζ118 | ζ53ζ118+ζ52ζ113 | ζ53ζ112+ζ52ζ119 | ζ53ζ117+ζ52ζ114 | ζ53ζ11+ζ52ζ1110 | ζ53ζ116+ζ52ζ115 | ζ54ζ1110+ζ5ζ11 | orthogonal faithful |
ρ27 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ53ζ114+ζ52ζ117 | ζ53ζ119+ζ52ζ112 | ζ53ζ113+ζ52ζ118 | ζ53ζ118+ζ52ζ113 | ζ53ζ112+ζ52ζ119 | ζ53ζ117+ζ52ζ114 | ζ53ζ11+ζ52ζ1110 | ζ53ζ116+ζ52ζ115 | ζ53ζ115+ζ52ζ116 | ζ54ζ116+ζ5ζ115 | ζ54ζ11+ζ5ζ1110 | ζ54ζ117+ζ5ζ114 | ζ54ζ112+ζ5ζ119 | ζ54ζ118+ζ5ζ113 | ζ54ζ113+ζ5ζ118 | ζ54ζ119+ζ5ζ112 | ζ54ζ114+ζ5ζ117 | ζ54ζ1110+ζ5ζ11 | ζ54ζ115+ζ5ζ116 | ζ53ζ1110+ζ52ζ11 | orthogonal faithful |
ρ28 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ53ζ11+ζ52ζ1110 | ζ53ζ115+ζ52ζ116 | ζ53ζ119+ζ52ζ112 | ζ53ζ112+ζ52ζ119 | ζ53ζ116+ζ52ζ115 | ζ53ζ1110+ζ52ζ11 | ζ53ζ113+ζ52ζ118 | ζ53ζ117+ζ52ζ114 | ζ53ζ114+ζ52ζ117 | ζ54ζ117+ζ5ζ114 | ζ54ζ113+ζ5ζ118 | ζ54ζ1110+ζ5ζ11 | ζ54ζ116+ζ5ζ115 | ζ54ζ112+ζ5ζ119 | ζ54ζ119+ζ5ζ112 | ζ54ζ115+ζ5ζ116 | ζ54ζ11+ζ5ζ1110 | ζ54ζ118+ζ5ζ113 | ζ54ζ114+ζ5ζ117 | ζ53ζ118+ζ52ζ113 | orthogonal faithful |
ρ29 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ54ζ116+ζ5ζ115 | ζ54ζ118+ζ5ζ113 | ζ54ζ1110+ζ5ζ11 | ζ54ζ11+ζ5ζ1110 | ζ54ζ113+ζ5ζ118 | ζ54ζ115+ζ5ζ116 | ζ54ζ117+ζ5ζ114 | ζ54ζ119+ζ5ζ112 | ζ54ζ112+ζ5ζ119 | ζ53ζ112+ζ52ζ119 | ζ53ζ114+ζ52ζ117 | ζ53ζ116+ζ52ζ115 | ζ53ζ118+ζ52ζ113 | ζ53ζ1110+ζ52ζ11 | ζ53ζ11+ζ52ζ1110 | ζ53ζ113+ζ52ζ118 | ζ53ζ115+ζ52ζ116 | ζ53ζ117+ζ52ζ114 | ζ53ζ119+ζ52ζ112 | ζ54ζ114+ζ5ζ117 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55)
(1 55)(2 54)(3 53)(4 52)(5 51)(6 50)(7 49)(8 48)(9 47)(10 46)(11 45)(12 44)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)
G:=sub<Sym(55)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55)], [(1,55),(2,54),(3,53),(4,52),(5,51),(6,50),(7,49),(8,48),(9,47),(10,46),(11,45),(12,44),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29)]])
D55 is a maximal subgroup of
D5×D11 D165
D55 is a maximal quotient of Dic55 D165
Matrix representation of D55 ►in GL2(𝔽331) generated by
134 | 168 |
163 | 276 |
134 | 168 |
100 | 197 |
G:=sub<GL(2,GF(331))| [134,163,168,276],[134,100,168,197] >;
D55 in GAP, Magma, Sage, TeX
D_{55}
% in TeX
G:=Group("D55");
// GroupNames label
G:=SmallGroup(110,5);
// by ID
G=gap.SmallGroup(110,5);
# by ID
G:=PCGroup([3,-2,-5,-11,49,902]);
// Polycyclic
G:=Group<a,b|a^55=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D55 in TeX
Character table of D55 in TeX