Copied to
clipboard

G = D5×D11order 220 = 22·5·11

Direct product of D5 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×D11, D55⋊C2, C51D22, C55⋊C22, C111D10, (D5×C11)⋊C2, (C5×D11)⋊C2, SmallGroup(220,11)

Series: Derived Chief Lower central Upper central

C1C55 — D5×D11
C1C11C55C5×D11 — D5×D11
C55 — D5×D11
C1

Generators and relations for D5×D11
 G = < a,b,c,d | a5=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
11C2
55C2
55C22
11C10
11D5
5C22
5D11
11D10
5D22

Character table of D5×D11

 class 12A2B2C5A5B10A10B11A11B11C11D11E22A22B22C22D22E55A55B55C55D55E55F55G55H55I55J
 size 1511552222222222210101010104444444444
ρ11111111111111111111111111111    trivial
ρ211-1-111-1-111111111111111111111    linear of order 2
ρ31-1-1111-1-111111-1-1-1-1-11111111111    linear of order 2
ρ41-11-1111111111-1-1-1-1-11111111111    linear of order 2
ρ52020-1-5/2-1+5/2-1+5/2-1-5/22222200000-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ62020-1+5/2-1-5/2-1-5/2-1+5/22222200000-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ720-20-1-5/2-1+5/21-5/21+5/22222200000-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2    orthogonal lifted from D10
ρ820-20-1+5/2-1-5/21+5/21-5/22222200000-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2    orthogonal lifted from D10
ρ92-2002200ζ116115ζ118113ζ119112ζ117114ζ111011119112117114118113111011116115ζ117114ζ118113ζ111011ζ116115ζ119112ζ118113ζ111011ζ116115ζ119112ζ117114    orthogonal lifted from D22
ρ102-2002200ζ117114ζ119112ζ116115ζ111011ζ118113116115111011119112118113117114ζ111011ζ119112ζ118113ζ117114ζ116115ζ119112ζ118113ζ117114ζ116115ζ111011    orthogonal lifted from D22
ρ1122002200ζ118113ζ117114ζ111011ζ119112ζ116115ζ111011ζ119112ζ117114ζ116115ζ118113ζ119112ζ117114ζ116115ζ118113ζ111011ζ117114ζ116115ζ118113ζ111011ζ119112    orthogonal lifted from D11
ρ1222002200ζ119112ζ111011ζ118113ζ116115ζ117114ζ118113ζ116115ζ111011ζ117114ζ119112ζ116115ζ111011ζ117114ζ119112ζ118113ζ111011ζ117114ζ119112ζ118113ζ116115    orthogonal lifted from D11
ρ132-2002200ζ111011ζ116115ζ117114ζ118113ζ119112117114118113116115119112111011ζ118113ζ116115ζ119112ζ111011ζ117114ζ116115ζ119112ζ111011ζ117114ζ118113    orthogonal lifted from D22
ρ1422002200ζ116115ζ118113ζ119112ζ117114ζ111011ζ119112ζ117114ζ118113ζ111011ζ116115ζ117114ζ118113ζ111011ζ116115ζ119112ζ118113ζ111011ζ116115ζ119112ζ117114    orthogonal lifted from D11
ρ152-2002200ζ118113ζ117114ζ111011ζ119112ζ116115111011119112117114116115118113ζ119112ζ117114ζ116115ζ118113ζ111011ζ117114ζ116115ζ118113ζ111011ζ119112    orthogonal lifted from D22
ρ1622002200ζ117114ζ119112ζ116115ζ111011ζ118113ζ116115ζ111011ζ119112ζ118113ζ117114ζ111011ζ119112ζ118113ζ117114ζ116115ζ119112ζ118113ζ117114ζ116115ζ111011    orthogonal lifted from D11
ρ1722002200ζ111011ζ116115ζ117114ζ118113ζ119112ζ117114ζ118113ζ116115ζ119112ζ111011ζ118113ζ116115ζ119112ζ111011ζ117114ζ116115ζ119112ζ111011ζ117114ζ118113    orthogonal lifted from D11
ρ182-2002200ζ119112ζ111011ζ118113ζ116115ζ117114118113116115111011117114119112ζ116115ζ111011ζ117114ζ119112ζ118113ζ111011ζ117114ζ119112ζ118113ζ116115    orthogonal lifted from D22
ρ194000-1+5-1-500119+2ζ1121110+2ζ11118+2ζ113116+2ζ115117+2ζ11400000ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ11853ζ11352ζ11852ζ113ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ11654ζ1155ζ1165ζ115    orthogonal faithful
ρ204000-1+5-1-500117+2ζ114119+2ζ112116+2ζ1151110+2ζ11118+2ζ11300000ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11653ζ11552ζ11652ζ115ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ111054ζ115ζ11105ζ11    orthogonal faithful
ρ214000-1-5-1+500118+2ζ113117+2ζ1141110+2ζ11119+2ζ112116+2ζ11500000ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ111054ζ115ζ11105ζ11ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11953ζ11252ζ11952ζ112    orthogonal faithful
ρ224000-1-5-1+5001110+2ζ11116+2ζ115117+2ζ114118+2ζ113119+2ζ11200000ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11754ζ1145ζ1175ζ114ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11853ζ11352ζ11852ζ113    orthogonal faithful
ρ234000-1+5-1-5001110+2ζ11116+2ζ115117+2ζ114118+2ζ113119+2ζ11200000ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11753ζ11452ζ11752ζ114ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11854ζ1135ζ1185ζ113    orthogonal faithful
ρ244000-1-5-1+500117+2ζ114119+2ζ112116+2ζ1151110+2ζ11118+2ζ11300000ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11654ζ1155ζ1165ζ115ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ111053ζ1152ζ111052ζ11    orthogonal faithful
ρ254000-1-5-1+500119+2ζ1121110+2ζ11118+2ζ113116+2ζ115117+2ζ11400000ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ11854ζ1135ζ1185ζ113ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ11653ζ11552ζ11652ζ115    orthogonal faithful
ρ264000-1-5-1+500116+2ζ115118+2ζ113119+2ζ112117+2ζ1141110+2ζ1100000ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ11954ζ1125ζ1195ζ112ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ11753ζ11452ζ11752ζ114    orthogonal faithful
ρ274000-1+5-1-500118+2ζ113117+2ζ1141110+2ζ11119+2ζ112116+2ζ11500000ζ53ζ11953ζ11252ζ11952ζ112ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ111053ζ1152ζ111052ζ11ζ54ζ11754ζ1145ζ1175ζ114ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11954ζ1125ζ1195ζ112    orthogonal faithful
ρ284000-1+5-1-500116+2ζ115118+2ζ113119+2ζ112117+2ζ1141110+2ζ1100000ζ53ζ11753ζ11452ζ11752ζ114ζ53ζ11853ζ11352ζ11852ζ113ζ53ζ111053ζ1152ζ111052ζ11ζ53ζ11653ζ11552ζ11652ζ115ζ53ζ11953ζ11252ζ11952ζ112ζ54ζ11854ζ1135ζ1185ζ113ζ54ζ111054ζ115ζ11105ζ11ζ54ζ11654ζ1155ζ1165ζ115ζ54ζ11954ζ1125ζ1195ζ112ζ54ζ11754ζ1145ζ1175ζ114    orthogonal faithful

Smallest permutation representation of D5×D11
On 55 points
Generators in S55
(1 54 43 32 21)(2 55 44 33 22)(3 45 34 23 12)(4 46 35 24 13)(5 47 36 25 14)(6 48 37 26 15)(7 49 38 27 16)(8 50 39 28 17)(9 51 40 29 18)(10 52 41 30 19)(11 53 42 31 20)
(1 21)(2 22)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(23 45)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)

G:=sub<Sym(55)| (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)>;

G:=Group( (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54) );

G=PermutationGroup([[(1,54,43,32,21),(2,55,44,33,22),(3,45,34,23,12),(4,46,35,24,13),(5,47,36,25,14),(6,48,37,26,15),(7,49,38,27,16),(8,50,39,28,17),(9,51,40,29,18),(10,52,41,30,19),(11,53,42,31,20)], [(1,21),(2,22),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(23,45),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54)]])

D5×D11 is a maximal quotient of   D552C4  C55⋊D4  C5⋊D44  C11⋊D20  C55⋊Q8

Matrix representation of D5×D11 in GL4(𝔽331) generated by

1000
0100
003301
00213117
,
330000
033000
003300
002131
,
0100
33015900
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(331))| [1,0,0,0,0,1,0,0,0,0,330,213,0,0,1,117],[330,0,0,0,0,330,0,0,0,0,330,213,0,0,0,1],[0,330,0,0,1,159,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

D5×D11 in GAP, Magma, Sage, TeX

D_5\times D_{11}
% in TeX

G:=Group("D5xD11");
// GroupNames label

G:=SmallGroup(220,11);
// by ID

G=gap.SmallGroup(220,11);
# by ID

G:=PCGroup([4,-2,-2,-5,-11,102,3203]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×D11 in TeX
Character table of D5×D11 in TeX

׿
×
𝔽