direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D5×D11, D55⋊C2, C5⋊1D22, C55⋊C22, C11⋊1D10, (D5×C11)⋊C2, (C5×D11)⋊C2, SmallGroup(220,11)
Series: Derived ►Chief ►Lower central ►Upper central
C55 — D5×D11 |
Generators and relations for D5×D11
G = < a,b,c,d | a5=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of D5×D11
class | 1 | 2A | 2B | 2C | 5A | 5B | 10A | 10B | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 55A | 55B | 55C | 55D | 55E | 55F | 55G | 55H | 55I | 55J | |
size | 1 | 5 | 11 | 55 | 2 | 2 | 22 | 22 | 2 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 0 | -2 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 0 | -2 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | orthogonal lifted from D22 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal lifted from D22 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | orthogonal lifted from D22 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ15 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal lifted from D22 |
ρ16 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ17 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | orthogonal lifted from D22 |
ρ19 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 2ζ119+2ζ112 | 2ζ1110+2ζ11 | 2ζ118+2ζ113 | 2ζ116+2ζ115 | 2ζ117+2ζ114 | 0 | 0 | 0 | 0 | 0 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | orthogonal faithful |
ρ20 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 2ζ117+2ζ114 | 2ζ119+2ζ112 | 2ζ116+2ζ115 | 2ζ1110+2ζ11 | 2ζ118+2ζ113 | 0 | 0 | 0 | 0 | 0 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | orthogonal faithful |
ρ21 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 2ζ118+2ζ113 | 2ζ117+2ζ114 | 2ζ1110+2ζ11 | 2ζ119+2ζ112 | 2ζ116+2ζ115 | 0 | 0 | 0 | 0 | 0 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | orthogonal faithful |
ρ22 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 2ζ1110+2ζ11 | 2ζ116+2ζ115 | 2ζ117+2ζ114 | 2ζ118+2ζ113 | 2ζ119+2ζ112 | 0 | 0 | 0 | 0 | 0 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | orthogonal faithful |
ρ23 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 2ζ1110+2ζ11 | 2ζ116+2ζ115 | 2ζ117+2ζ114 | 2ζ118+2ζ113 | 2ζ119+2ζ112 | 0 | 0 | 0 | 0 | 0 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | orthogonal faithful |
ρ24 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 2ζ117+2ζ114 | 2ζ119+2ζ112 | 2ζ116+2ζ115 | 2ζ1110+2ζ11 | 2ζ118+2ζ113 | 0 | 0 | 0 | 0 | 0 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | orthogonal faithful |
ρ25 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 2ζ119+2ζ112 | 2ζ1110+2ζ11 | 2ζ118+2ζ113 | 2ζ116+2ζ115 | 2ζ117+2ζ114 | 0 | 0 | 0 | 0 | 0 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | orthogonal faithful |
ρ26 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 2ζ116+2ζ115 | 2ζ118+2ζ113 | 2ζ119+2ζ112 | 2ζ117+2ζ114 | 2ζ1110+2ζ11 | 0 | 0 | 0 | 0 | 0 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | orthogonal faithful |
ρ27 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 2ζ118+2ζ113 | 2ζ117+2ζ114 | 2ζ1110+2ζ11 | 2ζ119+2ζ112 | 2ζ116+2ζ115 | 0 | 0 | 0 | 0 | 0 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | orthogonal faithful |
ρ28 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 2ζ116+2ζ115 | 2ζ118+2ζ113 | 2ζ119+2ζ112 | 2ζ117+2ζ114 | 2ζ1110+2ζ11 | 0 | 0 | 0 | 0 | 0 | ζ53ζ117+ζ53ζ114+ζ52ζ117+ζ52ζ114 | ζ53ζ118+ζ53ζ113+ζ52ζ118+ζ52ζ113 | ζ53ζ1110+ζ53ζ11+ζ52ζ1110+ζ52ζ11 | ζ53ζ116+ζ53ζ115+ζ52ζ116+ζ52ζ115 | ζ53ζ119+ζ53ζ112+ζ52ζ119+ζ52ζ112 | ζ54ζ118+ζ54ζ113+ζ5ζ118+ζ5ζ113 | ζ54ζ1110+ζ54ζ11+ζ5ζ1110+ζ5ζ11 | ζ54ζ116+ζ54ζ115+ζ5ζ116+ζ5ζ115 | ζ54ζ119+ζ54ζ112+ζ5ζ119+ζ5ζ112 | ζ54ζ117+ζ54ζ114+ζ5ζ117+ζ5ζ114 | orthogonal faithful |
(1 54 43 32 21)(2 55 44 33 22)(3 45 34 23 12)(4 46 35 24 13)(5 47 36 25 14)(6 48 37 26 15)(7 49 38 27 16)(8 50 39 28 17)(9 51 40 29 18)(10 52 41 30 19)(11 53 42 31 20)
(1 21)(2 22)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(23 45)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)
G:=sub<Sym(55)| (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)>;
G:=Group( (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20), (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54) );
G=PermutationGroup([[(1,54,43,32,21),(2,55,44,33,22),(3,45,34,23,12),(4,46,35,24,13),(5,47,36,25,14),(6,48,37,26,15),(7,49,38,27,16),(8,50,39,28,17),(9,51,40,29,18),(10,52,41,30,19),(11,53,42,31,20)], [(1,21),(2,22),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(23,45),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54)]])
D5×D11 is a maximal quotient of D55⋊2C4 C55⋊D4 C5⋊D44 C11⋊D20 C55⋊Q8
Matrix representation of D5×D11 ►in GL4(𝔽331) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 330 | 1 |
0 | 0 | 213 | 117 |
330 | 0 | 0 | 0 |
0 | 330 | 0 | 0 |
0 | 0 | 330 | 0 |
0 | 0 | 213 | 1 |
0 | 1 | 0 | 0 |
330 | 159 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(331))| [1,0,0,0,0,1,0,0,0,0,330,213,0,0,1,117],[330,0,0,0,0,330,0,0,0,0,330,213,0,0,0,1],[0,330,0,0,1,159,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;
D5×D11 in GAP, Magma, Sage, TeX
D_5\times D_{11}
% in TeX
G:=Group("D5xD11");
// GroupNames label
G:=SmallGroup(220,11);
// by ID
G=gap.SmallGroup(220,11);
# by ID
G:=PCGroup([4,-2,-2,-5,-11,102,3203]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D5×D11 in TeX
Character table of D5×D11 in TeX