metacyclic, supersoluble, monomial
Aliases: C25⋊C10, D25⋊C5, C52.D5, 5- 1+2⋊C2, C5.3(C5×D5), SmallGroup(250,6)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C25 — 5- 1+2 — C25⋊C10 |
C25 — C25⋊C10 |
Generators and relations for C25⋊C10
G = < a,b | a25=b10=1, bab-1=a9 >
Character table of C25⋊C10
class | 1 | 2 | 5A | 5B | 5C | 5D | 5E | 5F | 10A | 10B | 10C | 10D | 25A | 25B | 25C | 25D | 25E | 25F | 25G | 25H | 25I | 25J | |
size | 1 | 25 | 2 | 2 | 5 | 5 | 5 | 5 | 25 | 25 | 25 | 25 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ54 | ζ53 | ζ5 | 1 | ζ54 | ζ5 | ζ52 | ζ52 | 1 | ζ53 | linear of order 10 |
ρ4 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ5 | ζ52 | 1 | ζ53 | ζ52 | ζ54 | ζ54 | 1 | ζ5 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ53 | ζ5 | 1 | ζ54 | ζ5 | ζ52 | ζ52 | 1 | ζ53 | linear of order 5 |
ρ6 | 1 | -1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ52 | ζ54 | ζ53 | 1 | ζ52 | ζ53 | ζ5 | ζ5 | 1 | ζ54 | linear of order 10 |
ρ7 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ54 | ζ53 | 1 | ζ52 | ζ53 | ζ5 | ζ5 | 1 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ52 | ζ54 | 1 | ζ5 | ζ54 | ζ53 | ζ53 | 1 | ζ52 | linear of order 5 |
ρ9 | 1 | -1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ53 | ζ5 | ζ52 | 1 | ζ53 | ζ52 | ζ54 | ζ54 | 1 | ζ5 | linear of order 10 |
ρ10 | 1 | -1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ5 | ζ52 | ζ54 | 1 | ζ5 | ζ54 | ζ53 | ζ53 | 1 | ζ52 | linear of order 10 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 0 | 2 | 2 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | 0 | 0 | 0 | 0 | ζ53+1 | ζ5+1 | ζ52+1 | -1-√5/2 | ζ52+ζ5 | ζ54+ζ53 | ζ53+ζ5 | ζ54+1 | -1+√5/2 | ζ54+ζ52 | complex lifted from C5×D5 |
ρ14 | 2 | 0 | 2 | 2 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | 0 | 0 | 0 | 0 | ζ5+1 | ζ52+1 | ζ54+1 | -1+√5/2 | ζ54+ζ52 | ζ53+ζ5 | ζ52+ζ5 | ζ53+1 | -1-√5/2 | ζ54+ζ53 | complex lifted from C5×D5 |
ρ15 | 2 | 0 | 2 | 2 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | 0 | 0 | 0 | 0 | ζ54+1 | ζ53+1 | ζ5+1 | -1+√5/2 | ζ53+ζ5 | ζ54+ζ52 | ζ54+ζ53 | ζ52+1 | -1-√5/2 | ζ52+ζ5 | complex lifted from C5×D5 |
ρ16 | 2 | 0 | 2 | 2 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | 0 | 0 | 0 | 0 | ζ54+ζ52 | ζ54+ζ53 | ζ53+ζ5 | -1-√5/2 | ζ5+1 | ζ54+1 | ζ53+1 | ζ52+ζ5 | -1+√5/2 | ζ52+1 | complex lifted from C5×D5 |
ρ17 | 2 | 0 | 2 | 2 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | 0 | 0 | 0 | 0 | ζ54+ζ53 | ζ53+ζ5 | ζ52+ζ5 | -1+√5/2 | ζ52+1 | ζ53+1 | ζ5+1 | ζ54+ζ52 | -1-√5/2 | ζ54+1 | complex lifted from C5×D5 |
ρ18 | 2 | 0 | 2 | 2 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | 0 | 0 | 0 | 0 | ζ52+ζ5 | ζ54+ζ52 | ζ54+ζ53 | -1+√5/2 | ζ53+1 | ζ52+1 | ζ54+1 | ζ53+ζ5 | -1-√5/2 | ζ5+1 | complex lifted from C5×D5 |
ρ19 | 2 | 0 | 2 | 2 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | 0 | 0 | 0 | 0 | ζ52+1 | ζ54+1 | ζ53+1 | -1-√5/2 | ζ54+ζ53 | ζ52+ζ5 | ζ54+ζ52 | ζ5+1 | -1+√5/2 | ζ53+ζ5 | complex lifted from C5×D5 |
ρ20 | 2 | 0 | 2 | 2 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | 0 | 0 | 0 | 0 | ζ53+ζ5 | ζ52+ζ5 | ζ54+ζ52 | -1-√5/2 | ζ54+1 | ζ5+1 | ζ52+1 | ζ54+ζ53 | -1+√5/2 | ζ53+1 | complex lifted from C5×D5 |
ρ21 | 10 | 0 | -5+5√5/2 | -5-5√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 10 | 0 | -5-5√5/2 | -5+5√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)
(2 15 22 20 17 25 12 5 7 10)(3 4 18 14 8 24 23 9 13 19)(6 21)(11 16)
G:=sub<Sym(25)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (2,15,22,20,17,25,12,5,7,10)(3,4,18,14,8,24,23,9,13,19)(6,21)(11,16)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (2,15,22,20,17,25,12,5,7,10)(3,4,18,14,8,24,23,9,13,19)(6,21)(11,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)], [(2,15,22,20,17,25,12,5,7,10),(3,4,18,14,8,24,23,9,13,19),(6,21),(11,16)]])
G:=TransitiveGroup(25,25);
C25⋊C10 is a maximal subgroup of
C25⋊C20
C25⋊C10 is a maximal quotient of C50.C10
Matrix representation of C25⋊C10 ►in GL10(𝔽101)
0 | 0 | 79 | 79 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 79 | 79 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 22 | 100 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 79 | 79 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 22 | 100 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 79 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 100 |
100 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
79 | 79 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 100 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 79 |
0 | 0 | 0 | 0 | 0 | 0 | 100 | 22 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 22 | 100 | 0 | 0 | 0 | 0 |
0 | 0 | 79 | 79 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 100 | 22 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(10,GF(101))| [0,0,0,0,0,0,0,0,100,79,0,0,0,0,0,0,0,0,22,79,79,22,0,0,0,0,0,0,0,0,79,100,0,0,0,0,0,0,0,0,0,0,79,22,0,0,0,0,0,0,0,0,79,100,0,0,0,0,0,0,0,0,0,0,79,22,0,0,0,0,0,0,0,0,79,100,0,0,0,0,0,0,0,0,0,0,79,22,0,0,0,0,0,0,0,0,79,100,0,0],[1,22,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,79,100,0,0,0,0,0,0,0,0,79,22,0,0,0,0,0,0,1,22,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,22,1,0,0,0,0,0,0,22,79,0,0,0,0,0,0,0,0,100,79,0,0,0,0,0,0] >;
C25⋊C10 in GAP, Magma, Sage, TeX
C_{25}\rtimes C_{10}
% in TeX
G:=Group("C25:C10");
// GroupNames label
G:=SmallGroup(250,6);
// by ID
G=gap.SmallGroup(250,6);
# by ID
G:=PCGroup([4,-2,-5,-5,-5,1082,366,250,3203]);
// Polycyclic
G:=Group<a,b|a^25=b^10=1,b*a*b^-1=a^9>;
// generators/relations
Export
Subgroup lattice of C25⋊C10 in TeX
Character table of C25⋊C10 in TeX