direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: Q8×C15, C4.C30, C60.7C2, C20.3C6, C12.3C10, C30.24C22, C10.7(C2×C6), C2.2(C2×C30), C6.7(C2×C10), SmallGroup(120,33)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8×C15
G = < a,b,c | a15=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 104 37 75)(2 105 38 61)(3 91 39 62)(4 92 40 63)(5 93 41 64)(6 94 42 65)(7 95 43 66)(8 96 44 67)(9 97 45 68)(10 98 31 69)(11 99 32 70)(12 100 33 71)(13 101 34 72)(14 102 35 73)(15 103 36 74)(16 52 88 115)(17 53 89 116)(18 54 90 117)(19 55 76 118)(20 56 77 119)(21 57 78 120)(22 58 79 106)(23 59 80 107)(24 60 81 108)(25 46 82 109)(26 47 83 110)(27 48 84 111)(28 49 85 112)(29 50 86 113)(30 51 87 114)
(1 116 37 53)(2 117 38 54)(3 118 39 55)(4 119 40 56)(5 120 41 57)(6 106 42 58)(7 107 43 59)(8 108 44 60)(9 109 45 46)(10 110 31 47)(11 111 32 48)(12 112 33 49)(13 113 34 50)(14 114 35 51)(15 115 36 52)(16 103 88 74)(17 104 89 75)(18 105 90 61)(19 91 76 62)(20 92 77 63)(21 93 78 64)(22 94 79 65)(23 95 80 66)(24 96 81 67)(25 97 82 68)(26 98 83 69)(27 99 84 70)(28 100 85 71)(29 101 86 72)(30 102 87 73)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,104,37,75)(2,105,38,61)(3,91,39,62)(4,92,40,63)(5,93,41,64)(6,94,42,65)(7,95,43,66)(8,96,44,67)(9,97,45,68)(10,98,31,69)(11,99,32,70)(12,100,33,71)(13,101,34,72)(14,102,35,73)(15,103,36,74)(16,52,88,115)(17,53,89,116)(18,54,90,117)(19,55,76,118)(20,56,77,119)(21,57,78,120)(22,58,79,106)(23,59,80,107)(24,60,81,108)(25,46,82,109)(26,47,83,110)(27,48,84,111)(28,49,85,112)(29,50,86,113)(30,51,87,114), (1,116,37,53)(2,117,38,54)(3,118,39,55)(4,119,40,56)(5,120,41,57)(6,106,42,58)(7,107,43,59)(8,108,44,60)(9,109,45,46)(10,110,31,47)(11,111,32,48)(12,112,33,49)(13,113,34,50)(14,114,35,51)(15,115,36,52)(16,103,88,74)(17,104,89,75)(18,105,90,61)(19,91,76,62)(20,92,77,63)(21,93,78,64)(22,94,79,65)(23,95,80,66)(24,96,81,67)(25,97,82,68)(26,98,83,69)(27,99,84,70)(28,100,85,71)(29,101,86,72)(30,102,87,73)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,104,37,75)(2,105,38,61)(3,91,39,62)(4,92,40,63)(5,93,41,64)(6,94,42,65)(7,95,43,66)(8,96,44,67)(9,97,45,68)(10,98,31,69)(11,99,32,70)(12,100,33,71)(13,101,34,72)(14,102,35,73)(15,103,36,74)(16,52,88,115)(17,53,89,116)(18,54,90,117)(19,55,76,118)(20,56,77,119)(21,57,78,120)(22,58,79,106)(23,59,80,107)(24,60,81,108)(25,46,82,109)(26,47,83,110)(27,48,84,111)(28,49,85,112)(29,50,86,113)(30,51,87,114), (1,116,37,53)(2,117,38,54)(3,118,39,55)(4,119,40,56)(5,120,41,57)(6,106,42,58)(7,107,43,59)(8,108,44,60)(9,109,45,46)(10,110,31,47)(11,111,32,48)(12,112,33,49)(13,113,34,50)(14,114,35,51)(15,115,36,52)(16,103,88,74)(17,104,89,75)(18,105,90,61)(19,91,76,62)(20,92,77,63)(21,93,78,64)(22,94,79,65)(23,95,80,66)(24,96,81,67)(25,97,82,68)(26,98,83,69)(27,99,84,70)(28,100,85,71)(29,101,86,72)(30,102,87,73) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,104,37,75),(2,105,38,61),(3,91,39,62),(4,92,40,63),(5,93,41,64),(6,94,42,65),(7,95,43,66),(8,96,44,67),(9,97,45,68),(10,98,31,69),(11,99,32,70),(12,100,33,71),(13,101,34,72),(14,102,35,73),(15,103,36,74),(16,52,88,115),(17,53,89,116),(18,54,90,117),(19,55,76,118),(20,56,77,119),(21,57,78,120),(22,58,79,106),(23,59,80,107),(24,60,81,108),(25,46,82,109),(26,47,83,110),(27,48,84,111),(28,49,85,112),(29,50,86,113),(30,51,87,114)], [(1,116,37,53),(2,117,38,54),(3,118,39,55),(4,119,40,56),(5,120,41,57),(6,106,42,58),(7,107,43,59),(8,108,44,60),(9,109,45,46),(10,110,31,47),(11,111,32,48),(12,112,33,49),(13,113,34,50),(14,114,35,51),(15,115,36,52),(16,103,88,74),(17,104,89,75),(18,105,90,61),(19,91,76,62),(20,92,77,63),(21,93,78,64),(22,94,79,65),(23,95,80,66),(24,96,81,67),(25,97,82,68),(26,98,83,69),(27,99,84,70),(28,100,85,71),(29,101,86,72),(30,102,87,73)]])
Q8×C15 is a maximal subgroup of
Q8⋊2D15 C15⋊7Q16 Q8⋊3D15
75 conjugacy classes
| class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 6A | 6B | 10A | 10B | 10C | 10D | 12A | ··· | 12F | 15A | ··· | 15H | 20A | ··· | 20L | 30A | ··· | 30H | 60A | ··· | 60X |
| order | 1 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 10 | 10 | 10 | 10 | 12 | ··· | 12 | 15 | ··· | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
75 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| type | + | + | - | |||||||||
| image | C1 | C2 | C3 | C5 | C6 | C10 | C15 | C30 | Q8 | C3×Q8 | C5×Q8 | Q8×C15 |
| kernel | Q8×C15 | C60 | C5×Q8 | C3×Q8 | C20 | C12 | Q8 | C4 | C15 | C5 | C3 | C1 |
| # reps | 1 | 3 | 2 | 4 | 6 | 12 | 8 | 24 | 1 | 2 | 4 | 8 |
Matrix representation of Q8×C15 ►in GL2(𝔽31) generated by
| 20 | 0 |
| 0 | 20 |
| 27 | 17 |
| 30 | 4 |
| 0 | 18 |
| 12 | 0 |
G:=sub<GL(2,GF(31))| [20,0,0,20],[27,30,17,4],[0,12,18,0] >;
Q8×C15 in GAP, Magma, Sage, TeX
Q_8\times C_{15} % in TeX
G:=Group("Q8xC15"); // GroupNames label
G:=SmallGroup(120,33);
// by ID
G=gap.SmallGroup(120,33);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,-2,300,621,306]);
// Polycyclic
G:=Group<a,b,c|a^15=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export