Extensions 1→N→G→Q→1 with N=C2xC4 and Q=D7

Direct product G=NxQ with N=C2xC4 and Q=D7
dρLabelID
C2xC4xD756C2xC4xD7112,28

Semidirect products G=N:Q with N=C2xC4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2xC4):1D7 = D14:C4φ: D7/C7C2 ⊆ Aut C2xC456(C2xC4):1D7112,13
(C2xC4):2D7 = C2xD28φ: D7/C7C2 ⊆ Aut C2xC456(C2xC4):2D7112,29
(C2xC4):3D7 = C4oD28φ: D7/C7C2 ⊆ Aut C2xC4562(C2xC4):3D7112,30

Non-split extensions G=N.Q with N=C2xC4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2xC4).1D7 = Dic7:C4φ: D7/C7C2 ⊆ Aut C2xC4112(C2xC4).1D7112,11
(C2xC4).2D7 = C4.Dic7φ: D7/C7C2 ⊆ Aut C2xC4562(C2xC4).2D7112,9
(C2xC4).3D7 = C4:Dic7φ: D7/C7C2 ⊆ Aut C2xC4112(C2xC4).3D7112,12
(C2xC4).4D7 = C2xDic14φ: D7/C7C2 ⊆ Aut C2xC4112(C2xC4).4D7112,27
(C2xC4).5D7 = C2xC7:C8central extension (φ=1)112(C2xC4).5D7112,8
(C2xC4).6D7 = C4xDic7central extension (φ=1)112(C2xC4).6D7112,10

׿
x
:
Z
F
o
wr
Q
<