metabelian, supersoluble, monomial
Aliases: C12:2D12, C62.86C23, (C3xC12):8D4, (C6xD12):8C2, C6.43(S3xD4), (C2xD12):11S3, C12:3(C3:D4), C4:Dic3:15S3, C6.80(C2xD12), C4:3(C3:D12), C3:1(D6:3D4), C3:5(C12:D4), D6:Dic3:13C2, (C2xC12).142D6, C32:10(C4:D4), (C2xDic3).35D6, (C22xS3).21D6, C6.12(D4:2S3), C2.18(D6:D6), (C6xC12).109C22, C6.36(Q8:3S3), C2.19(D12:S3), (C6xDic3).19C22, (C2xC4).120S32, (C2xC3:S3):10D4, C6.18(C2xC3:D4), (C2xC3:D12):6C2, (C3xC4:Dic3):19C2, C22.124(C2xS32), (C3xC6).111(C2xD4), (S3xC2xC6).36C22, (C3xC6).53(C4oD4), C2.21(C2xC3:D12), (C2xC6).105(C22xS3), (C22xC3:S3).74C22, (C2xC3:Dic3).139C22, (C2xC4xC3:S3):1C2, SmallGroup(288,564)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12:2D12
G = < a,b,c | a12=b12=c2=1, bab-1=a-1, cac=a5, cbc=b-1 >
Subgroups: 946 in 215 conjugacy classes, 54 normal (32 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C4:D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, C2xC3:S3, C2xC3:S3, C62, C4:Dic3, D6:C4, C6.D4, C3xC4:C4, S3xC2xC4, C2xD12, C2xD12, C2xC3:D4, C6xD4, C3:D12, C3xD12, C6xDic3, C4xC3:S3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, C12:D4, D6:3D4, D6:Dic3, C3xC4:Dic3, C2xC3:D12, C6xD12, C2xC4xC3:S3, C12:2D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, S32, C2xD12, S3xD4, D4:2S3, Q8:3S3, C2xC3:D4, C3:D12, C2xS32, C12:D4, D6:3D4, D12:S3, D6:D6, C2xC3:D12, C12:2D12
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 43 34 13 5 39 26 21 9 47 30 17)(2 42 35 24 6 38 27 20 10 46 31 16)(3 41 36 23 7 37 28 19 11 45 32 15)(4 40 25 22 8 48 29 18 12 44 33 14)
(1 34)(2 27)(3 32)(4 25)(5 30)(6 35)(7 28)(8 33)(9 26)(10 31)(11 36)(12 29)(13 17)(14 22)(16 20)(19 23)(38 42)(39 47)(41 45)(44 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,34,13,5,39,26,21,9,47,30,17)(2,42,35,24,6,38,27,20,10,46,31,16)(3,41,36,23,7,37,28,19,11,45,32,15)(4,40,25,22,8,48,29,18,12,44,33,14), (1,34)(2,27)(3,32)(4,25)(5,30)(6,35)(7,28)(8,33)(9,26)(10,31)(11,36)(12,29)(13,17)(14,22)(16,20)(19,23)(38,42)(39,47)(41,45)(44,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,34,13,5,39,26,21,9,47,30,17)(2,42,35,24,6,38,27,20,10,46,31,16)(3,41,36,23,7,37,28,19,11,45,32,15)(4,40,25,22,8,48,29,18,12,44,33,14), (1,34)(2,27)(3,32)(4,25)(5,30)(6,35)(7,28)(8,33)(9,26)(10,31)(11,36)(12,29)(13,17)(14,22)(16,20)(19,23)(38,42)(39,47)(41,45)(44,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,43,34,13,5,39,26,21,9,47,30,17),(2,42,35,24,6,38,27,20,10,46,31,16),(3,41,36,23,7,37,28,19,11,45,32,15),(4,40,25,22,8,48,29,18,12,44,33,14)], [(1,34),(2,27),(3,32),(4,25),(5,30),(6,35),(7,28),(8,33),(9,26),(10,31),(11,36),(12,29),(13,17),(14,22),(16,20),(19,23),(38,42),(39,47),(41,45),(44,48)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | ··· | 12H | 12I | 12J | 12K | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 12 | 12 | 18 | 18 | 2 | 2 | 4 | 2 | 2 | 12 | 12 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | ··· | 4 | 12 | 12 | 12 | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | C4oD4 | D12 | C3:D4 | S32 | S3xD4 | D4:2S3 | Q8:3S3 | C3:D12 | C2xS32 | D12:S3 | D6:D6 |
kernel | C12:2D12 | D6:Dic3 | C3xC4:Dic3 | C2xC3:D12 | C6xD12 | C2xC4xC3:S3 | C4:Dic3 | C2xD12 | C3xC12 | C2xC3:S3 | C2xDic3 | C2xC12 | C22xS3 | C3xC6 | C12 | C12 | C2xC4 | C6 | C6 | C6 | C4 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 |
Matrix representation of C12:2D12 ►in GL8(F13)
8 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
11 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(8,GF(13))| [8,0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[11,2,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,11,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1] >;
C12:2D12 in GAP, Magma, Sage, TeX
C_{12}\rtimes_2D_{12}
% in TeX
G:=Group("C12:2D12");
// GroupNames label
G:=SmallGroup(288,564);
// by ID
G=gap.SmallGroup(288,564);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,64,422,219,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c|a^12=b^12=c^2=1,b*a*b^-1=a^-1,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations