Copied to
clipboard

G = Dic17order 68 = 22·17

Dicyclic group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: Dic17, C172C4, C34.C2, C2.D17, SmallGroup(68,1)

Series: Derived Chief Lower central Upper central

C1C17 — Dic17
C1C17C34 — Dic17
C17 — Dic17
C1C2

Generators and relations for Dic17
 G = < a,b | a34=1, b2=a17, bab-1=a-1 >

17C4

Character table of Dic17

 class 124A4B17A17B17C17D17E17F17G17H34A34B34C34D34E34F34G34H
 size 1117172222222222222222
ρ111111111111111111111    trivial
ρ211-1-11111111111111111    linear of order 2
ρ31-1i-i11111111-1-1-1-1-1-1-1-1    linear of order 4
ρ41-1-ii11111111-1-1-1-1-1-1-1-1    linear of order 4
ρ52200ζ179178ζ1710177ζ1712175ζ1714173ζ171617ζ1715172ζ1713174ζ1711176ζ1711176ζ179178ζ1710177ζ1712175ζ1714173ζ171617ζ1715172ζ1713174    orthogonal lifted from D17
ρ62200ζ1711176ζ171617ζ179178ζ1715172ζ1712175ζ1710177ζ1714173ζ1713174ζ1713174ζ1711176ζ171617ζ179178ζ1715172ζ1712175ζ1710177ζ1714173    orthogonal lifted from D17
ρ72200ζ171617ζ1714173ζ1710177ζ1711176ζ1715172ζ1713174ζ179178ζ1712175ζ1712175ζ171617ζ1714173ζ1710177ζ1711176ζ1715172ζ1713174ζ179178    orthogonal lifted from D17
ρ82200ζ1714173ζ179178ζ1713174ζ171617ζ1711176ζ1712175ζ1710177ζ1715172ζ1715172ζ1714173ζ179178ζ1713174ζ171617ζ1711176ζ1712175ζ1710177    orthogonal lifted from D17
ρ92200ζ1713174ζ1712175ζ1711176ζ1710177ζ179178ζ171617ζ1715172ζ1714173ζ1714173ζ1713174ζ1712175ζ1711176ζ1710177ζ179178ζ171617ζ1715172    orthogonal lifted from D17
ρ102200ζ1710177ζ1713174ζ1715172ζ179178ζ1714173ζ1711176ζ1712175ζ171617ζ171617ζ1710177ζ1713174ζ1715172ζ179178ζ1714173ζ1711176ζ1712175    orthogonal lifted from D17
ρ112200ζ1712175ζ1715172ζ171617ζ1713174ζ1710177ζ1714173ζ1711176ζ179178ζ179178ζ1712175ζ1715172ζ171617ζ1713174ζ1710177ζ1714173ζ1711176    orthogonal lifted from D17
ρ122200ζ1715172ζ1711176ζ1714173ζ1712175ζ1713174ζ179178ζ171617ζ1710177ζ1710177ζ1715172ζ1711176ζ1714173ζ1712175ζ1713174ζ179178ζ171617    orthogonal lifted from D17
ρ132-200ζ1711176ζ171617ζ179178ζ1715172ζ1712175ζ1710177ζ1714173ζ1713174171317417111761716171791781715172171217517101771714173    symplectic faithful, Schur index 2
ρ142-200ζ1710177ζ1713174ζ1715172ζ179178ζ1714173ζ1711176ζ1712175ζ171617171617171017717131741715172179178171417317111761712175    symplectic faithful, Schur index 2
ρ152-200ζ171617ζ1714173ζ1710177ζ1711176ζ1715172ζ1713174ζ179178ζ1712175171217517161717141731710177171117617151721713174179178    symplectic faithful, Schur index 2
ρ162-200ζ1713174ζ1712175ζ1711176ζ1710177ζ179178ζ171617ζ1715172ζ1714173171417317131741712175171117617101771791781716171715172    symplectic faithful, Schur index 2
ρ172-200ζ179178ζ1710177ζ1712175ζ1714173ζ171617ζ1715172ζ1713174ζ1711176171117617917817101771712175171417317161717151721713174    symplectic faithful, Schur index 2
ρ182-200ζ1714173ζ179178ζ1713174ζ171617ζ1711176ζ1712175ζ1710177ζ1715172171517217141731791781713174171617171117617121751710177    symplectic faithful, Schur index 2
ρ192-200ζ1715172ζ1711176ζ1714173ζ1712175ζ1713174ζ179178ζ171617ζ1710177171017717151721711176171417317121751713174179178171617    symplectic faithful, Schur index 2
ρ202-200ζ1712175ζ1715172ζ171617ζ1713174ζ1710177ζ1714173ζ1711176ζ179178179178171217517151721716171713174171017717141731711176    symplectic faithful, Schur index 2

Smallest permutation representation of Dic17
Regular action on 68 points
Generators in S68
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 65 18 48)(2 64 19 47)(3 63 20 46)(4 62 21 45)(5 61 22 44)(6 60 23 43)(7 59 24 42)(8 58 25 41)(9 57 26 40)(10 56 27 39)(11 55 28 38)(12 54 29 37)(13 53 30 36)(14 52 31 35)(15 51 32 68)(16 50 33 67)(17 49 34 66)

G:=sub<Sym(68)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,65,18,48)(2,64,19,47)(3,63,20,46)(4,62,21,45)(5,61,22,44)(6,60,23,43)(7,59,24,42)(8,58,25,41)(9,57,26,40)(10,56,27,39)(11,55,28,38)(12,54,29,37)(13,53,30,36)(14,52,31,35)(15,51,32,68)(16,50,33,67)(17,49,34,66)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,65,18,48)(2,64,19,47)(3,63,20,46)(4,62,21,45)(5,61,22,44)(6,60,23,43)(7,59,24,42)(8,58,25,41)(9,57,26,40)(10,56,27,39)(11,55,28,38)(12,54,29,37)(13,53,30,36)(14,52,31,35)(15,51,32,68)(16,50,33,67)(17,49,34,66) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,65,18,48),(2,64,19,47),(3,63,20,46),(4,62,21,45),(5,61,22,44),(6,60,23,43),(7,59,24,42),(8,58,25,41),(9,57,26,40),(10,56,27,39),(11,55,28,38),(12,54,29,37),(13,53,30,36),(14,52,31,35),(15,51,32,68),(16,50,33,67),(17,49,34,66)]])

Dic17 is a maximal subgroup of
C172C8  C4×D17  C17⋊D4  C173F5
 Dic17p: Dic34  Dic51  Dic85  Dic119 ...
Dic17 is a maximal quotient of
C173F5
 C2p.D17: C173C8  Dic51  Dic85  Dic119 ...

Matrix representation of Dic17 in GL2(𝔽137) generated by

61
1360
,
9136
82128
G:=sub<GL(2,GF(137))| [6,136,1,0],[9,82,136,128] >;

Dic17 in GAP, Magma, Sage, TeX

{\rm Dic}_{17}
% in TeX

G:=Group("Dic17");
// GroupNames label

G:=SmallGroup(68,1);
// by ID

G=gap.SmallGroup(68,1);
# by ID

G:=PCGroup([3,-2,-2,-17,6,578]);
// Polycyclic

G:=Group<a,b|a^34=1,b^2=a^17,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of Dic17 in TeX
Character table of Dic17 in TeX

׿
×
𝔽