metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: Dic17, C17⋊2C4, C34.C2, C2.D17, SmallGroup(68,1)
Series: Derived ►Chief ►Lower central ►Upper central
C17 — Dic17 |
Generators and relations for Dic17
G = < a,b | a34=1, b2=a17, bab-1=a-1 >
Character table of Dic17
class | 1 | 2 | 4A | 4B | 17A | 17B | 17C | 17D | 17E | 17F | 17G | 17H | 34A | 34B | 34C | 34D | 34E | 34F | 34G | 34H | |
size | 1 | 1 | 17 | 17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | 0 | 0 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1711+ζ176 | ζ1711+ζ176 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1713+ζ174 | orthogonal lifted from D17 |
ρ6 | 2 | 2 | 0 | 0 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1713+ζ174 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1714+ζ173 | orthogonal lifted from D17 |
ρ7 | 2 | 2 | 0 | 0 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1713+ζ174 | ζ179+ζ178 | ζ1712+ζ175 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1713+ζ174 | ζ179+ζ178 | orthogonal lifted from D17 |
ρ8 | 2 | 2 | 0 | 0 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1715+ζ172 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1710+ζ177 | orthogonal lifted from D17 |
ρ9 | 2 | 2 | 0 | 0 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ179+ζ178 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ179+ζ178 | ζ1716+ζ17 | ζ1715+ζ172 | orthogonal lifted from D17 |
ρ10 | 2 | 2 | 0 | 0 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1712+ζ175 | orthogonal lifted from D17 |
ρ11 | 2 | 2 | 0 | 0 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1711+ζ176 | ζ179+ζ178 | ζ179+ζ178 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1711+ζ176 | orthogonal lifted from D17 |
ρ12 | 2 | 2 | 0 | 0 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1713+ζ174 | ζ179+ζ178 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1713+ζ174 | ζ179+ζ178 | ζ1716+ζ17 | orthogonal lifted from D17 |
ρ13 | 2 | -2 | 0 | 0 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1713+ζ174 | -ζ1713-ζ174 | -ζ1711-ζ176 | -ζ1716-ζ17 | -ζ179-ζ178 | -ζ1715-ζ172 | -ζ1712-ζ175 | -ζ1710-ζ177 | -ζ1714-ζ173 | symplectic faithful, Schur index 2 |
ρ14 | 2 | -2 | 0 | 0 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1716+ζ17 | -ζ1716-ζ17 | -ζ1710-ζ177 | -ζ1713-ζ174 | -ζ1715-ζ172 | -ζ179-ζ178 | -ζ1714-ζ173 | -ζ1711-ζ176 | -ζ1712-ζ175 | symplectic faithful, Schur index 2 |
ρ15 | 2 | -2 | 0 | 0 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1713+ζ174 | ζ179+ζ178 | ζ1712+ζ175 | -ζ1712-ζ175 | -ζ1716-ζ17 | -ζ1714-ζ173 | -ζ1710-ζ177 | -ζ1711-ζ176 | -ζ1715-ζ172 | -ζ1713-ζ174 | -ζ179-ζ178 | symplectic faithful, Schur index 2 |
ρ16 | 2 | -2 | 0 | 0 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ179+ζ178 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1714+ζ173 | -ζ1714-ζ173 | -ζ1713-ζ174 | -ζ1712-ζ175 | -ζ1711-ζ176 | -ζ1710-ζ177 | -ζ179-ζ178 | -ζ1716-ζ17 | -ζ1715-ζ172 | symplectic faithful, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1711+ζ176 | -ζ1711-ζ176 | -ζ179-ζ178 | -ζ1710-ζ177 | -ζ1712-ζ175 | -ζ1714-ζ173 | -ζ1716-ζ17 | -ζ1715-ζ172 | -ζ1713-ζ174 | symplectic faithful, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1715+ζ172 | -ζ1715-ζ172 | -ζ1714-ζ173 | -ζ179-ζ178 | -ζ1713-ζ174 | -ζ1716-ζ17 | -ζ1711-ζ176 | -ζ1712-ζ175 | -ζ1710-ζ177 | symplectic faithful, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1713+ζ174 | ζ179+ζ178 | ζ1716+ζ17 | ζ1710+ζ177 | -ζ1710-ζ177 | -ζ1715-ζ172 | -ζ1711-ζ176 | -ζ1714-ζ173 | -ζ1712-ζ175 | -ζ1713-ζ174 | -ζ179-ζ178 | -ζ1716-ζ17 | symplectic faithful, Schur index 2 |
ρ20 | 2 | -2 | 0 | 0 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1711+ζ176 | ζ179+ζ178 | -ζ179-ζ178 | -ζ1712-ζ175 | -ζ1715-ζ172 | -ζ1716-ζ17 | -ζ1713-ζ174 | -ζ1710-ζ177 | -ζ1714-ζ173 | -ζ1711-ζ176 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 65 18 48)(2 64 19 47)(3 63 20 46)(4 62 21 45)(5 61 22 44)(6 60 23 43)(7 59 24 42)(8 58 25 41)(9 57 26 40)(10 56 27 39)(11 55 28 38)(12 54 29 37)(13 53 30 36)(14 52 31 35)(15 51 32 68)(16 50 33 67)(17 49 34 66)
G:=sub<Sym(68)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,65,18,48)(2,64,19,47)(3,63,20,46)(4,62,21,45)(5,61,22,44)(6,60,23,43)(7,59,24,42)(8,58,25,41)(9,57,26,40)(10,56,27,39)(11,55,28,38)(12,54,29,37)(13,53,30,36)(14,52,31,35)(15,51,32,68)(16,50,33,67)(17,49,34,66)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,65,18,48)(2,64,19,47)(3,63,20,46)(4,62,21,45)(5,61,22,44)(6,60,23,43)(7,59,24,42)(8,58,25,41)(9,57,26,40)(10,56,27,39)(11,55,28,38)(12,54,29,37)(13,53,30,36)(14,52,31,35)(15,51,32,68)(16,50,33,67)(17,49,34,66) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,65,18,48),(2,64,19,47),(3,63,20,46),(4,62,21,45),(5,61,22,44),(6,60,23,43),(7,59,24,42),(8,58,25,41),(9,57,26,40),(10,56,27,39),(11,55,28,38),(12,54,29,37),(13,53,30,36),(14,52,31,35),(15,51,32,68),(16,50,33,67),(17,49,34,66)]])
Dic17 is a maximal subgroup of
C17⋊2C8 C4×D17 C17⋊D4 C17⋊3F5
Dic17p: Dic34 Dic51 Dic85 Dic119 ...
Dic17 is a maximal quotient of
C17⋊3F5
C2p.D17: C17⋊3C8 Dic51 Dic85 Dic119 ...
Matrix representation of Dic17 ►in GL2(𝔽137) generated by
6 | 1 |
136 | 0 |
9 | 136 |
82 | 128 |
G:=sub<GL(2,GF(137))| [6,136,1,0],[9,82,136,128] >;
Dic17 in GAP, Magma, Sage, TeX
{\rm Dic}_{17}
% in TeX
G:=Group("Dic17");
// GroupNames label
G:=SmallGroup(68,1);
// by ID
G=gap.SmallGroup(68,1);
# by ID
G:=PCGroup([3,-2,-2,-17,6,578]);
// Polycyclic
G:=Group<a,b|a^34=1,b^2=a^17,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Dic17 in TeX
Character table of Dic17 in TeX