metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊2Q16, Q8.D5, C4.4D10, C10.10D4, C20.4C22, Dic10.2C2, C5⋊2C8.1C2, (C5×Q8).1C2, C2.7(C5⋊D4), SmallGroup(80,18)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊Q16
G = < a,b,c | a5=b8=1, c2=b4, bab-1=a-1, ac=ca, cbc-1=b-1 >
Character table of C5⋊Q16
class | 1 | 2 | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 10A | 10B | 20A | 20B | 20C | 20D | 20E | 20F | |
size | 1 | 1 | 2 | 4 | 20 | 2 | 2 | 10 | 10 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | -2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | 2 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 2 | -2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ11 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | 1+√5/2 | ζ54-ζ5 | complex lifted from C5⋊D4 |
ρ13 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | 1+√5/2 | -ζ54+ζ5 | complex lifted from C5⋊D4 |
ρ14 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | 1-√5/2 | ζ53-ζ52 | complex lifted from C5⋊D4 |
ρ15 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | 1-√5/2 | -ζ53+ζ52 | complex lifted from C5⋊D4 |
ρ16 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ17 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 66 77 34 10)(2 11 35 78 67)(3 68 79 36 12)(4 13 37 80 69)(5 70 73 38 14)(6 15 39 74 71)(7 72 75 40 16)(8 9 33 76 65)(17 29 60 50 42)(18 43 51 61 30)(19 31 62 52 44)(20 45 53 63 32)(21 25 64 54 46)(22 47 55 57 26)(23 27 58 56 48)(24 41 49 59 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 60 5 64)(2 59 6 63)(3 58 7 62)(4 57 8 61)(9 30 13 26)(10 29 14 25)(11 28 15 32)(12 27 16 31)(17 38 21 34)(18 37 22 33)(19 36 23 40)(20 35 24 39)(41 74 45 78)(42 73 46 77)(43 80 47 76)(44 79 48 75)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)
G:=sub<Sym(80)| (1,66,77,34,10)(2,11,35,78,67)(3,68,79,36,12)(4,13,37,80,69)(5,70,73,38,14)(6,15,39,74,71)(7,72,75,40,16)(8,9,33,76,65)(17,29,60,50,42)(18,43,51,61,30)(19,31,62,52,44)(20,45,53,63,32)(21,25,64,54,46)(22,47,55,57,26)(23,27,58,56,48)(24,41,49,59,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,60,5,64)(2,59,6,63)(3,58,7,62)(4,57,8,61)(9,30,13,26)(10,29,14,25)(11,28,15,32)(12,27,16,31)(17,38,21,34)(18,37,22,33)(19,36,23,40)(20,35,24,39)(41,74,45,78)(42,73,46,77)(43,80,47,76)(44,79,48,75)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)>;
G:=Group( (1,66,77,34,10)(2,11,35,78,67)(3,68,79,36,12)(4,13,37,80,69)(5,70,73,38,14)(6,15,39,74,71)(7,72,75,40,16)(8,9,33,76,65)(17,29,60,50,42)(18,43,51,61,30)(19,31,62,52,44)(20,45,53,63,32)(21,25,64,54,46)(22,47,55,57,26)(23,27,58,56,48)(24,41,49,59,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,60,5,64)(2,59,6,63)(3,58,7,62)(4,57,8,61)(9,30,13,26)(10,29,14,25)(11,28,15,32)(12,27,16,31)(17,38,21,34)(18,37,22,33)(19,36,23,40)(20,35,24,39)(41,74,45,78)(42,73,46,77)(43,80,47,76)(44,79,48,75)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72) );
G=PermutationGroup([[(1,66,77,34,10),(2,11,35,78,67),(3,68,79,36,12),(4,13,37,80,69),(5,70,73,38,14),(6,15,39,74,71),(7,72,75,40,16),(8,9,33,76,65),(17,29,60,50,42),(18,43,51,61,30),(19,31,62,52,44),(20,45,53,63,32),(21,25,64,54,46),(22,47,55,57,26),(23,27,58,56,48),(24,41,49,59,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,60,5,64),(2,59,6,63),(3,58,7,62),(4,57,8,61),(9,30,13,26),(10,29,14,25),(11,28,15,32),(12,27,16,31),(17,38,21,34),(18,37,22,33),(19,36,23,40),(20,35,24,39),(41,74,45,78),(42,73,46,77),(43,80,47,76),(44,79,48,75),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72)]])
C5⋊Q16 is a maximal subgroup of
SD16⋊D5 SD16⋊3D5 D5×Q16 Q16⋊D5 C20.C23 D4.8D10 D4.9D10 C15⋊Q16 C5⋊Dic12 C15⋊7Q16 Q8.D15 C25⋊Q16 C52⋊2Q16 C52⋊3Q16 C52⋊7Q16
C5⋊Q16 is a maximal quotient of
C10.D8 C10.Q16 Q8⋊Dic5 C15⋊Q16 C5⋊Dic12 C15⋊7Q16 C25⋊Q16 C52⋊2Q16 C52⋊3Q16 C52⋊7Q16
Matrix representation of C5⋊Q16 ►in GL4(𝔽41) generated by
6 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
6 | 1 | 0 | 0 |
6 | 35 | 0 | 0 |
0 | 0 | 12 | 29 |
0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 34 | 27 |
0 | 0 | 27 | 7 |
G:=sub<GL(4,GF(41))| [6,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[6,6,0,0,1,35,0,0,0,0,12,12,0,0,29,12],[1,0,0,0,0,1,0,0,0,0,34,27,0,0,27,7] >;
C5⋊Q16 in GAP, Magma, Sage, TeX
C_5\rtimes Q_{16}
% in TeX
G:=Group("C5:Q16");
// GroupNames label
G:=SmallGroup(80,18);
// by ID
G=gap.SmallGroup(80,18);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,40,61,46,182,97,42,1604]);
// Polycyclic
G:=Group<a,b,c|a^5=b^8=1,c^2=b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C5⋊Q16 in TeX
Character table of C5⋊Q16 in TeX