Extensions 1→N→G→Q→1 with N=SD16 and Q=C2×C4

Direct product G=N×Q with N=SD16 and Q=C2×C4
dρLabelID
C2×C4×SD1664C2xC4xSD16128,1669

Semidirect products G=N:Q with N=SD16 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
SD161(C2×C4) = C4×C8⋊C22φ: C2×C4/C4C2 ⊆ Out SD1632SD16:1(C2xC4)128,1676
SD162(C2×C4) = C4×C8.C22φ: C2×C4/C4C2 ⊆ Out SD1664SD16:2(C2xC4)128,1677
SD163(C2×C4) = C42.275C23φ: C2×C4/C4C2 ⊆ Out SD1632SD16:3(C2xC4)128,1678
SD164(C2×C4) = C42.276C23φ: C2×C4/C4C2 ⊆ Out SD1664SD16:4(C2xC4)128,1679
SD165(C2×C4) = M4(2).51D4φ: C2×C4/C4C2 ⊆ Out SD16164SD16:5(C2xC4)128,1688
SD166(C2×C4) = C2×SD16⋊C4φ: C2×C4/C22C2 ⊆ Out SD1664SD16:6(C2xC4)128,1672
SD167(C2×C4) = C42.383D4φ: C2×C4/C22C2 ⊆ Out SD1664SD16:7(C2xC4)128,1675
SD168(C2×C4) = C42.280C23φ: C2×C4/C22C2 ⊆ Out SD1664SD16:8(C2xC4)128,1683
SD169(C2×C4) = C2×C8.26D4φ: C2×C4/C22C2 ⊆ Out SD1632SD16:9(C2xC4)128,1686
SD1610(C2×C4) = C4×C4○D8φ: trivial image64SD16:10(C2xC4)128,1671
SD1611(C2×C4) = C42.278C23φ: trivial image32SD16:11(C2xC4)128,1681
SD1612(C2×C4) = C42.281C23φ: trivial image64SD16:12(C2xC4)128,1684
SD1613(C2×C4) = C2×C8○D8φ: trivial image32SD16:13(C2xC4)128,1685

Non-split extensions G=N.Q with N=SD16 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
SD16.(C2×C4) = C42.283C23φ: C2×C4/C4C2 ⊆ Out SD16324SD16.(C2xC4)128,1687
SD16.2(C2×C4) = M4(2)○D8φ: trivial image324SD16.2(C2xC4)128,1689

׿
×
𝔽