Copied to
clipboard

G = C2×SD16⋊C4order 128 = 27

Direct product of C2 and SD16⋊C4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×SD16⋊C4, C42.202D4, C42.269C23, C83(C22×C4), C4.45(C4×D4), SD166(C2×C4), (C2×SD16)⋊9C4, Q82(C22×C4), C4.17(C23×C4), (C4×Q8)⋊75C22, D4.3(C22×C4), C8⋊C434C22, C2.D864C22, C4⋊C4.357C23, (C2×C4).197C24, (C2×C8).408C23, (C22×C4).707D4, C23.843(C2×D4), C22.118(C4×D4), Q8⋊C490C22, (C4×D4).290C22, (C2×D4).367C23, (C2×Q8).340C23, (C22×SD16).3C2, (C22×C8).436C22, (C2×C42).762C22, C22.141(C22×D4), D4⋊C4.194C22, C22.107(C8⋊C22), (C22×C4).1513C23, (C2×SD16).105C22, (C22×D4).557C22, C22.96(C8.C22), (C22×Q8).461C22, (C2×C4×Q8)⋊32C2, C2.57(C2×C4×D4), (C2×C8)⋊11(C2×C4), (C2×C8⋊C4)⋊4C2, (C2×C4×D4).74C2, C4.5(C2×C4○D4), (C2×Q8)⋊28(C2×C4), (C2×C2.D8)⋊38C2, C2.4(C2×C8⋊C22), C2.4(C2×C8.C22), (C2×Q8⋊C4)⋊52C2, (C2×D4).176(C2×C4), (C2×C4).1209(C2×D4), (C2×D4⋊C4).37C2, (C2×C4).689(C4○D4), (C2×C4⋊C4).909C22, (C2×C4).468(C22×C4), SmallGroup(128,1672)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2×SD16⋊C4
C1C2C22C2×C4C22×C4C2×C42C2×C4×D4 — C2×SD16⋊C4
C1C2C4 — C2×SD16⋊C4
C1C23C2×C42 — C2×SD16⋊C4
C1C2C2C2×C4 — C2×SD16⋊C4

Generators and relations for C2×SD16⋊C4
 G = < a,b,c,d | a2=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd-1=b5, cd=dc >

Subgroups: 476 in 272 conjugacy classes, 148 normal (28 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×2], C4 [×2], C4 [×12], C22, C22 [×6], C22 [×16], C8 [×4], C8 [×2], C2×C4 [×2], C2×C4 [×8], C2×C4 [×26], D4 [×4], D4 [×6], Q8 [×4], Q8 [×6], C23, C23 [×10], C42 [×4], C42 [×4], C22⋊C4 [×4], C4⋊C4 [×4], C4⋊C4 [×6], C2×C8 [×8], C2×C8 [×2], SD16 [×16], C22×C4 [×3], C22×C4 [×11], C2×D4 [×6], C2×D4 [×3], C2×Q8 [×6], C2×Q8 [×3], C24, C8⋊C4 [×4], D4⋊C4 [×4], Q8⋊C4 [×4], C2.D8 [×4], C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4 [×2], C2×C4⋊C4, C4×D4 [×4], C4×D4 [×2], C4×Q8 [×4], C4×Q8 [×2], C22×C8 [×2], C2×SD16 [×12], C23×C4, C22×D4, C22×Q8, C2×C8⋊C4, C2×D4⋊C4, C2×Q8⋊C4, C2×C2.D8, SD16⋊C4 [×8], C2×C4×D4, C2×C4×Q8, C22×SD16, C2×SD16⋊C4
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], C23 [×15], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, C4×D4 [×4], C8⋊C22 [×2], C8.C22 [×2], C23×C4, C22×D4, C2×C4○D4, SD16⋊C4 [×4], C2×C4×D4, C2×C8⋊C22, C2×C8.C22, C2×SD16⋊C4

Smallest permutation representation of C2×SD16⋊C4
On 64 points
Generators in S64
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 61)(18 62)(19 63)(20 64)(21 57)(22 58)(23 59)(24 60)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 59)(2 62)(3 57)(4 60)(5 63)(6 58)(7 61)(8 64)(9 32)(10 27)(11 30)(12 25)(13 28)(14 31)(15 26)(16 29)(17 50)(18 53)(19 56)(20 51)(21 54)(22 49)(23 52)(24 55)(33 44)(34 47)(35 42)(36 45)(37 48)(38 43)(39 46)(40 41)
(1 27 59 10)(2 32 60 15)(3 29 61 12)(4 26 62 9)(5 31 63 14)(6 28 64 11)(7 25 57 16)(8 30 58 13)(17 36 54 41)(18 33 55 46)(19 38 56 43)(20 35 49 48)(21 40 50 45)(22 37 51 42)(23 34 52 47)(24 39 53 44)

G:=sub<Sym(64)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41), (1,27,59,10)(2,32,60,15)(3,29,61,12)(4,26,62,9)(5,31,63,14)(6,28,64,11)(7,25,57,16)(8,30,58,13)(17,36,54,41)(18,33,55,46)(19,38,56,43)(20,35,49,48)(21,40,50,45)(22,37,51,42)(23,34,52,47)(24,39,53,44)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41), (1,27,59,10)(2,32,60,15)(3,29,61,12)(4,26,62,9)(5,31,63,14)(6,28,64,11)(7,25,57,16)(8,30,58,13)(17,36,54,41)(18,33,55,46)(19,38,56,43)(20,35,49,48)(21,40,50,45)(22,37,51,42)(23,34,52,47)(24,39,53,44) );

G=PermutationGroup([(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,61),(18,62),(19,63),(20,64),(21,57),(22,58),(23,59),(24,60),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,59),(2,62),(3,57),(4,60),(5,63),(6,58),(7,61),(8,64),(9,32),(10,27),(11,30),(12,25),(13,28),(14,31),(15,26),(16,29),(17,50),(18,53),(19,56),(20,51),(21,54),(22,49),(23,52),(24,55),(33,44),(34,47),(35,42),(36,45),(37,48),(38,43),(39,46),(40,41)], [(1,27,59,10),(2,32,60,15),(3,29,61,12),(4,26,62,9),(5,31,63,14),(6,28,64,11),(7,25,57,16),(8,30,58,13),(17,36,54,41),(18,33,55,46),(19,38,56,43),(20,35,49,48),(21,40,50,45),(22,37,51,42),(23,34,52,47),(24,39,53,44)])

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4L4M···4X8A···8H
order12···222224···44···48···8
size11···144442···24···44···4

44 irreducible representations

dim111111111122244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C4D4D4C4○D4C8⋊C22C8.C22
kernelC2×SD16⋊C4C2×C8⋊C4C2×D4⋊C4C2×Q8⋊C4C2×C2.D8SD16⋊C4C2×C4×D4C2×C4×Q8C22×SD16C2×SD16C42C22×C4C2×C4C22C22
# reps1111181111622422

Matrix representation of C2×SD16⋊C4 in GL8(𝔽17)

160000000
016000000
00100000
00010000
00001000
00000100
00000010
00000001
,
01000000
160000000
00040000
00400000
0000215215
00002222
0000215152
0000221515
,
10000000
016000000
001600000
00010000
000016000
00000100
000000160
00000001
,
160000000
016000000
001300000
000130000
00000010
00000001
000016000
000001600

G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,15,2,15,2,0,0,0,0,2,2,15,15,0,0,0,0,15,2,2,15],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C2×SD16⋊C4 in GAP, Magma, Sage, TeX

C_2\times {\rm SD}_{16}\rtimes C_4
% in TeX

G:=Group("C2xSD16:C4");
// GroupNames label

G:=SmallGroup(128,1672);
// by ID

G=gap.SmallGroup(128,1672);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,184,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d^-1=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽