direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×SD16⋊C4, C42.202D4, C42.269C23, C8⋊3(C22×C4), C4.45(C4×D4), SD16⋊6(C2×C4), (C2×SD16)⋊9C4, Q8⋊2(C22×C4), C4.17(C23×C4), (C4×Q8)⋊75C22, D4.3(C22×C4), C8⋊C4⋊34C22, C2.D8⋊64C22, C4⋊C4.357C23, (C2×C4).197C24, (C2×C8).408C23, (C22×C4).707D4, C23.843(C2×D4), C22.118(C4×D4), Q8⋊C4⋊90C22, (C4×D4).290C22, (C2×D4).367C23, (C2×Q8).340C23, (C22×SD16).3C2, (C22×C8).436C22, (C2×C42).762C22, C22.141(C22×D4), D4⋊C4.194C22, C22.107(C8⋊C22), (C22×C4).1513C23, (C2×SD16).105C22, (C22×D4).557C22, C22.96(C8.C22), (C22×Q8).461C22, (C2×C4×Q8)⋊32C2, C2.57(C2×C4×D4), (C2×C8)⋊11(C2×C4), (C2×C8⋊C4)⋊4C2, (C2×C4×D4).74C2, C4.5(C2×C4○D4), (C2×Q8)⋊28(C2×C4), (C2×C2.D8)⋊38C2, C2.4(C2×C8⋊C22), C2.4(C2×C8.C22), (C2×Q8⋊C4)⋊52C2, (C2×D4).176(C2×C4), (C2×C4).1209(C2×D4), (C2×D4⋊C4).37C2, (C2×C4).689(C4○D4), (C2×C4⋊C4).909C22, (C2×C4).468(C22×C4), SmallGroup(128,1672)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×SD16⋊C4
G = < a,b,c,d | a2=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd-1=b5, cd=dc >
Subgroups: 476 in 272 conjugacy classes, 148 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C4×Q8, C22×C8, C2×SD16, C23×C4, C22×D4, C22×Q8, C2×C8⋊C4, C2×D4⋊C4, C2×Q8⋊C4, C2×C2.D8, SD16⋊C4, C2×C4×D4, C2×C4×Q8, C22×SD16, C2×SD16⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C8⋊C22, C8.C22, C23×C4, C22×D4, C2×C4○D4, SD16⋊C4, C2×C4×D4, C2×C8⋊C22, C2×C8.C22, C2×SD16⋊C4
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 61)(18 62)(19 63)(20 64)(21 57)(22 58)(23 59)(24 60)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 59)(2 62)(3 57)(4 60)(5 63)(6 58)(7 61)(8 64)(9 32)(10 27)(11 30)(12 25)(13 28)(14 31)(15 26)(16 29)(17 50)(18 53)(19 56)(20 51)(21 54)(22 49)(23 52)(24 55)(33 44)(34 47)(35 42)(36 45)(37 48)(38 43)(39 46)(40 41)
(1 27 59 10)(2 32 60 15)(3 29 61 12)(4 26 62 9)(5 31 63 14)(6 28 64 11)(7 25 57 16)(8 30 58 13)(17 36 54 41)(18 33 55 46)(19 38 56 43)(20 35 49 48)(21 40 50 45)(22 37 51 42)(23 34 52 47)(24 39 53 44)
G:=sub<Sym(64)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41), (1,27,59,10)(2,32,60,15)(3,29,61,12)(4,26,62,9)(5,31,63,14)(6,28,64,11)(7,25,57,16)(8,30,58,13)(17,36,54,41)(18,33,55,46)(19,38,56,43)(20,35,49,48)(21,40,50,45)(22,37,51,42)(23,34,52,47)(24,39,53,44)>;
G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41), (1,27,59,10)(2,32,60,15)(3,29,61,12)(4,26,62,9)(5,31,63,14)(6,28,64,11)(7,25,57,16)(8,30,58,13)(17,36,54,41)(18,33,55,46)(19,38,56,43)(20,35,49,48)(21,40,50,45)(22,37,51,42)(23,34,52,47)(24,39,53,44) );
G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,61),(18,62),(19,63),(20,64),(21,57),(22,58),(23,59),(24,60),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,59),(2,62),(3,57),(4,60),(5,63),(6,58),(7,61),(8,64),(9,32),(10,27),(11,30),(12,25),(13,28),(14,31),(15,26),(16,29),(17,50),(18,53),(19,56),(20,51),(21,54),(22,49),(23,52),(24,55),(33,44),(34,47),(35,42),(36,45),(37,48),(38,43),(39,46),(40,41)], [(1,27,59,10),(2,32,60,15),(3,29,61,12),(4,26,62,9),(5,31,63,14),(6,28,64,11),(7,25,57,16),(8,30,58,13),(17,36,54,41),(18,33,55,46),(19,38,56,43),(20,35,49,48),(21,40,50,45),(22,37,51,42),(23,34,52,47),(24,39,53,44)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4L | 4M | ··· | 4X | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4○D4 | C8⋊C22 | C8.C22 |
kernel | C2×SD16⋊C4 | C2×C8⋊C4 | C2×D4⋊C4 | C2×Q8⋊C4 | C2×C2.D8 | SD16⋊C4 | C2×C4×D4 | C2×C4×Q8 | C22×SD16 | C2×SD16 | C42 | C22×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 16 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of C2×SD16⋊C4 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 15 | 2 | 15 |
0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
0 | 0 | 0 | 0 | 2 | 15 | 15 | 2 |
0 | 0 | 0 | 0 | 2 | 2 | 15 | 15 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,15,2,15,2,0,0,0,0,2,2,15,15,0,0,0,0,15,2,2,15],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C2×SD16⋊C4 in GAP, Magma, Sage, TeX
C_2\times {\rm SD}_{16}\rtimes C_4
% in TeX
G:=Group("C2xSD16:C4");
// GroupNames label
G:=SmallGroup(128,1672);
// by ID
G=gap.SmallGroup(128,1672);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,184,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d^-1=b^5,c*d=d*c>;
// generators/relations