p-group, metacyclic, nilpotent (class 3), monomial
Aliases: SD16, Q8⋊C2, C8⋊2C2, D4.C2, C2.4D4, C4.2C22, 2-Sylow(GL(2,3)), also known as the quasi-dihedral group QD16, SmallGroup(16,8)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for SD16
G = < a,b | a8=b2=1, bab=a3 >
Character table of SD16
class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | |
size | 1 | 1 | 4 | 2 | 4 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 0 | 0 | 0 | -√-2 | √-2 | complex faithful |
ρ7 | 2 | -2 | 0 | 0 | 0 | √-2 | -√-2 | complex faithful |
(1 2 3 4 5 6 7 8)
(2 4)(3 7)(6 8)
G:=sub<Sym(8)| (1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8)>;
G:=Group( (1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8)], [(2,4),(3,7),(6,8)]])
G:=TransitiveGroup(8,8);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 13)(2 16)(3 11)(4 14)(5 9)(6 12)(7 15)(8 10)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,13),(2,16),(3,11),(4,14),(5,9),(6,12),(7,15),(8,10)]])
G:=TransitiveGroup(16,12);
SD16 is a maximal subgroup of
GL2(𝔽3) C32⋊2SD16 AΓL1(𝔽9) C52⋊SD16
C2p.D4: C4○D8 C8⋊C22 C8.C22 C24⋊C2 D4.S3 Q8⋊2S3 C40⋊C2 D4.D5 ...
SD16 is a maximal quotient of
C4.Q8 C32⋊2SD16 AΓL1(𝔽9) C52⋊SD16
C2p.D4: D4⋊C4 Q8⋊C4 C24⋊C2 D4.S3 Q8⋊2S3 C40⋊C2 D4.D5 Q8⋊D5 ...
action | f(x) | Disc(f) |
---|---|---|
8T8 | x8-14x6-10x5+31x4+15x3-14x2-5x+1 | 56·712·1013 |
Matrix representation of SD16 ►in GL2(𝔽3) generated by
0 | 1 |
1 | 1 |
1 | 1 |
0 | 2 |
G:=sub<GL(2,GF(3))| [0,1,1,1],[1,0,1,2] >;
SD16 in GAP, Magma, Sage, TeX
{\rm SD}_{16}
% in TeX
G:=Group("SD16");
// GroupNames label
G:=SmallGroup(16,8);
// by ID
G=gap.SmallGroup(16,8);
# by ID
G:=PCGroup([4,-2,2,-2,-2,32,49,146,78,34]);
// Polycyclic
G:=Group<a,b|a^8=b^2=1,b*a*b=a^3>;
// generators/relations
Export
Subgroup lattice of SD16 in TeX
Character table of SD16 in TeX